Prediction of hierarchical time series using structured regularization
and its application to artificial neural networks
- URL: http://arxiv.org/abs/2007.15159v1
- Date: Thu, 30 Jul 2020 00:30:32 GMT
- Title: Prediction of hierarchical time series using structured regularization
and its application to artificial neural networks
- Authors: Tomokaze Shiratori and Ken Kobayashi and Yuichi Takano
- Abstract summary: We discuss the prediction of hierarchical time series, where each upper-level time series is calculated by summing appropriate lower-level time series.
Forecasts for such hierarchical time series should be coherent, meaning that the forecast for an upper-level time series equals the sum of forecasts for corresponding lower-level time series.
- Score: 4.696083734269231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper discusses the prediction of hierarchical time series, where each
upper-level time series is calculated by summing appropriate lower-level time
series. Forecasts for such hierarchical time series should be coherent, meaning
that the forecast for an upper-level time series equals the sum of forecasts
for corresponding lower-level time series. Previous methods for making coherent
forecasts consist of two phases: first computing base (incoherent) forecasts
and then reconciling those forecasts based on their inherent hierarchical
structure. With the aim of improving time series predictions, we propose a
structured regularization method for completing both phases simultaneously. The
proposed method is based on a prediction model for bottom-level time series and
uses a structured regularization term to incorporate upper-level forecasts into
the prediction model. We also develop a backpropagation algorithm specialized
for application of our method to artificial neural networks for time series
prediction. Experimental results using synthetic and real-world datasets
demonstrate the superiority of our method in terms of prediction accuracy and
computational efficiency.
Related papers
- Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
We present a Constrained Learning approach for long-term time series forecasting that respects a user-defined upper bound on the loss at each time-step.
We propose a practical Primal-Dual algorithm to tackle it, and aims to demonstrate that it exhibits competitive average performance in time series benchmarks, while shaping the errors across the predicted window.
arXiv Detail & Related papers (2024-02-14T18:20:44Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Efficient probabilistic reconciliation of forecasts for real-valued and
count time series [0.840358257755792]
We propose a new approach based on conditioning to reconcile any type of forecast distribution.
We then introduce a new algorithm, called Bottom-Up Sampling, to efficiently sample from the reconciled distribution.
arXiv Detail & Related papers (2022-10-05T14:22:24Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - A Top-Down Approach to Hierarchically Coherent Probabilistic Forecasting [21.023456590248827]
We use a novel attention-based RNN model to learn the distribution of the proportions according to which each parent prediction is split among its children nodes at any point in time.
The resulting forecasts are computed in a top-down fashion and are naturally coherent.
arXiv Detail & Related papers (2022-04-21T21:32:28Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Hierarchically Regularized Deep Forecasting [18.539846932184012]
We propose a new approach for hierarchical forecasting based on decomposing the time series along a global set of basis time series.
Unlike past methods, our approach is scalable at inference-time while preserving coherence among the time series forecasts.
arXiv Detail & Related papers (2021-06-14T17:38:16Z) - Forecasting reconciliation with a top-down alignment of independent
level forecasts [3.600932575533886]
The overall forecasting performance is heavily affected by the forecasting accuracy of intermittent time series at bottom levels.
We present a forecasting reconciliation approach that treats the bottom level forecast as latent to ensure higher forecasting accuracy on the upper levels of the hierarchy.
arXiv Detail & Related papers (2021-03-15T10:00:23Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z) - A machine learning approach for forecasting hierarchical time series [4.157415305926584]
We propose a machine learning approach for forecasting hierarchical time series.
Forecast reconciliation is the process of adjusting forecasts to make them coherent across the hierarchy.
We exploit the ability of a deep neural network to extract information capturing the structure of the hierarchy.
arXiv Detail & Related papers (2020-05-31T22:26:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.