論文の概要: LEMMA: A Multi-view Dataset for Learning Multi-agent Multi-task
Activities
- arxiv url: http://arxiv.org/abs/2007.15781v1
- Date: Fri, 31 Jul 2020 00:13:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 06:39:35.925416
- Title: LEMMA: A Multi-view Dataset for Learning Multi-agent Multi-task
Activities
- Title(参考訳): lemma:マルチエージェントマルチタスクアクティビティを学習するためのマルチビューデータセット
- Authors: Baoxiong Jia, Yixin Chen, Siyuan Huang, Yixin Zhu, Song-chun Zhu
- Abstract要約: LEMMAデータセットを導入し、細心の注意深い設定で、行方不明な次元に対処するための単一の家を提供する。
我々は、人間と物体の相互作用による原子間相互作用を密に注釈し、日常の活動の構成性、スケジューリング、割り当ての土台として提供する。
この取り組みにより、マシンビジョンコミュニティは、目標指向の人間活動を調べ、現実世界におけるタスクのスケジューリングと割り当てをさらに研究できることを期待します。
- 参考スコア(独自算出の注目度): 119.88381048477854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and interpreting human actions is a long-standing challenge and
a critical indicator of perception in artificial intelligence. However, a few
imperative components of daily human activities are largely missed in prior
literature, including the goal-directed actions, concurrent multi-tasks, and
collaborations among multi-agents. We introduce the LEMMA dataset to provide a
single home to address these missing dimensions with meticulously designed
settings, wherein the number of tasks and agents varies to highlight different
learning objectives. We densely annotate the atomic-actions with human-object
interactions to provide ground-truths of the compositionality, scheduling, and
assignment of daily activities. We further devise challenging compositional
action recognition and action/task anticipation benchmarks with baseline models
to measure the capability of compositional action understanding and temporal
reasoning. We hope this effort would drive the machine vision community to
examine goal-directed human activities and further study the task scheduling
and assignment in the real world.
- Abstract(参考訳): 人間の行動を理解し解釈することは長年の挑戦であり、人工知能における知覚の重要な指標である。
しかし、ゴール指向アクション、同時マルチタスク、マルチエージェント間のコラボレーションなど、日常的な活動の衝動的な要素は、これまでの文献ではほとんど失われている。
補題データセットを導入して,これらの欠落した次元に対して,細心の注意を払って設計した設定で対処するための単一のホームを提供し,異なる学習目標を強調するためにタスクやエージェントの数が異なる。
我々は、人間と物体の相互作用による原子間相互作用を密に注釈し、日常の活動の構成性、スケジューリング、割り当ての土台として提供する。
さらに,合成行動認識と行動/タスク予測ベンチマークをベースラインモデルで作成し,構成行動理解と時間的推論の能力を測定する。
この取り組みにより、マシンビジョンコミュニティは、目標指向の人間活動を調べ、現実世界におけるタスクのスケジューリングと割り当てをさらに研究できることを期待します。
関連論文リスト
- Understanding the Human-LLM Dynamic: A Literature Survey of LLM Use in Programming Tasks [0.850206009406913]
大規模言語モデル(LLM)はプログラミングプラクティスを変革し、コード生成活動に重要な機能を提供する。
本稿では,LLMがプログラミングタスクに与える影響を評価するユーザスタディから洞察を得た上で,プログラミングタスクにおけるそれらの使用に焦点を当てる。
論文 参考訳(メタデータ) (2024-10-01T19:34:46Z) - A Survey on Complex Tasks for Goal-Directed Interactive Agents [60.53915548970061]
この調査は、目標指向の対話エージェントを評価するための、関連するタスクと環境をコンパイルする。
関連リソースの最新のコンパイルは、プロジェクトのWebサイトにある。
論文 参考訳(メタデータ) (2024-09-27T08:17:53Z) - CooHOI: Learning Cooperative Human-Object Interaction with Manipulated Object Dynamics [44.30880626337739]
CooHOIはマルチヒューマノイド物体輸送問題の解決を目的としたフレームワークである。
単一のヒューマノイドキャラクタは、人間の動きの先行から模倣学習を通じてオブジェクトと対話することを学ぶ。
そして、ヒューマノイドは、操作対象の共有ダイナミクスを考慮し、他人と協調することを学ぶ。
論文 参考訳(メタデータ) (2024-06-20T17:59:22Z) - Continual Robot Learning using Self-Supervised Task Inference [19.635428830237842]
新しいタスクを継続的に学習するための自己教師型タスク推論手法を提案する。
我々は、行動マッチング型自己教師型学習目標を用いて、新しいタスク推論ネットワーク(TINet)を訓練する。
マルチタスクポリシはTINet上に構築され、タスクよりもパフォーマンスを最適化するために強化学習でトレーニングされている。
論文 参考訳(メタデータ) (2023-09-10T09:32:35Z) - Object-Centric Multi-Task Learning for Human Instances [8.035105819936808]
オブジェクト中心学習によって複数のタスクのパラメータを最大に共有する,コンパクトなマルチタスクネットワークアーキテクチャについて検討する。
我々は、人中心クエリ(HCQ)と呼ばれる、人間のインスタンス情報を効果的に符号化する新しいクエリ設計を提案する。
実験結果から,提案したマルチタスクネットワークは,最先端タスク固有モデルに匹敵する精度を実現することがわかった。
論文 参考訳(メタデータ) (2023-03-13T01:10:50Z) - Exploring the Role of Task Transferability in Large-Scale Multi-Task
Learning [28.104054292437525]
マルチタスク表現学習におけるタスクのスケールと関連性の影響を解消する。
目標タスクが事前に分かっている場合、関連するタスクのより小さなセットでのトレーニングは、大規模なマルチタスクトレーニングと競合する。
論文 参考訳(メタデータ) (2022-04-23T18:11:35Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z) - Towards More Generalizable One-shot Visual Imitation Learning [81.09074706236858]
汎用ロボットは、幅広いタスクを習得し、過去の経験を生かして、新しいタスクを素早く学ぶことができるべきである。
ワンショット模倣学習(OSIL)は、専門家のデモンストレーションでエージェントを訓練することで、この目標にアプローチする。
我々は、より野心的なマルチタスク設定を調査することで、より高度な一般化能力を追求する。
論文 参考訳(メタデータ) (2021-10-26T05:49:46Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
マルチタスク学習は、共有学習アルゴリズムによって複数のタスクを共同で学習する方法論として登場した。
我々は異種mtlに対処し,検出,分類,回帰問題を同時に解決する。
大規模な顔分析のための最初のフレームワークであるFaceBehaviorNetを構築し、すべての顔行動タスクを共同で学習する。
論文 参考訳(メタデータ) (2021-05-08T22:26:52Z) - The IKEA ASM Dataset: Understanding People Assembling Furniture through
Actions, Objects and Pose [108.21037046507483]
IKEA ASMは300万フレーム、マルチビュー、家具組み立てビデオデータセットで、深さ、原子活動、オブジェクトセグメンテーション、人間のポーズを含む。
我々は,この課題のあるデータセット上で,映像行動認識,オブジェクトセグメンテーション,人間のポーズ推定タスクの顕著な手法をベンチマークする。
このデータセットは、マルチモーダルデータとマルチビューデータを統合してこれらのタスクをよりよく実行する、全体論的手法の開発を可能にする。
論文 参考訳(メタデータ) (2020-07-01T11:34:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。