Neural Compression and Filtering for Edge-assisted Real-time Object
Detection in Challenged Networks
- URL: http://arxiv.org/abs/2007.15818v2
- Date: Sun, 18 Oct 2020 18:03:52 GMT
- Title: Neural Compression and Filtering for Edge-assisted Real-time Object
Detection in Challenged Networks
- Authors: Yoshitomo Matsubara, Marco Levorato
- Abstract summary: We focus on edge computing supporting remote object detection by means of Deep Neural Networks (DNNs)
We develop a framework to reduce the amount of data transmitted over the wireless link.
The proposed technique represents an effective intermediate option between local and edge computing in a parameter region.
- Score: 8.291242737118482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The edge computing paradigm places compute-capable devices - edge servers -
at the network edge to assist mobile devices in executing data analysis tasks.
Intuitively, offloading compute-intense tasks to edge servers can reduce their
execution time. However, poor conditions of the wireless channel connecting the
mobile devices to the edge servers may degrade the overall capture-to-output
delay achieved by edge offloading. Herein, we focus on edge computing
supporting remote object detection by means of Deep Neural Networks (DNNs), and
develop a framework to reduce the amount of data transmitted over the wireless
link. The core idea we propose builds on recent approaches splitting DNNs into
sections - namely head and tail models - executed by the mobile device and edge
server, respectively. The wireless link, then, is used to transport the output
of the last layer of the head model to the edge server, instead of the DNN
input. Most prior work focuses on classification tasks and leaves the DNN
structure unaltered. Herein, our focus is on DNNs for three different object
detection tasks, which present a much more convoluted structure, and modify the
architecture of the network to: (i) achieve in-network compression by
introducing a bottleneck layer in the early layers on the head model, and (ii)
prefilter pictures that do not contain objects of interest using a
convolutional neural network. Results show that the proposed technique
represents an effective intermediate option between local and edge computing in
a parameter region where these extreme point solutions fail to provide
satisfactory performance. The code and trained models are available at
https://github.com/yoshitomo-matsubara/hnd-ghnd-object-detectors .
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - SpikeBottleNet: Spike-Driven Feature Compression Architecture for Edge-Cloud Co-Inference [0.86325068644655]
We propose SpikeBottleNet, a novel architecture for edge-cloud co-inference systems.
SpikeBottleNet integrates a spiking neuron model to significantly reduce energy consumption on edge devices.
arXiv Detail & Related papers (2024-10-11T09:59:21Z) - Attention-based Feature Compression for CNN Inference Offloading in Edge
Computing [93.67044879636093]
This paper studies the computational offloading of CNN inference in device-edge co-inference systems.
We propose a novel autoencoder-based CNN architecture (AECNN) for effective feature extraction at end-device.
Experiments show that AECNN can compress the intermediate data by more than 256x with only about 4% accuracy loss.
arXiv Detail & Related papers (2022-11-24T18:10:01Z) - Dynamic Split Computing for Efficient Deep Edge Intelligence [78.4233915447056]
We introduce dynamic split computing, where the optimal split location is dynamically selected based on the state of the communication channel.
We show that dynamic split computing achieves faster inference in edge computing environments where the data rate and server load vary over time.
arXiv Detail & Related papers (2022-05-23T12:35:18Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - EffCNet: An Efficient CondenseNet for Image Classification on NXP
BlueBox [0.0]
Edge devices offer limited processing power due to their inexpensive hardware, and limited cooling and computational resources.
We propose a novel deep convolutional neural network architecture called EffCNet for edge devices.
arXiv Detail & Related papers (2021-11-28T21:32:31Z) - Latency-Memory Optimized Splitting of Convolution Neural Networks for
Resource Constrained Edge Devices [1.6873748786804317]
We argue that running CNNs between an edge device and the cloud is synonymous to solving a resource-constrained optimization problem.
Experiments done on real-world edge devices show that, LMOS ensures feasible execution of different CNN models at the edge.
arXiv Detail & Related papers (2021-07-19T19:39:56Z) - A Joint Energy and Latency Framework for Transfer Learning over 5G
Industrial Edge Networks [53.26338041079138]
We propose a transfer learning-enabled edge-CNN framework for 5G industrial edge networks.
In particular, the edge server can use the existing image dataset to train the CNN in advance.
With the aid of TL, the devices that are not participating in the training only need to fine-tune the trained edge-CNN model without training from scratch.
arXiv Detail & Related papers (2021-04-19T15:13:16Z) - Edge-Detect: Edge-centric Network Intrusion Detection using Deep Neural
Network [0.0]
Edge nodes are crucial for detection against multitudes of cyber attacks on Internet-of-Things endpoints.
We develop a novel light, fast and accurate 'Edge-Detect' model, which detects Denial of Service attack on edge nodes using DLM techniques.
arXiv Detail & Related papers (2021-02-03T04:24:34Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.