Graph signal processing for machine learning: A review and new
perspectives
- URL: http://arxiv.org/abs/2007.16061v1
- Date: Fri, 31 Jul 2020 13:21:33 GMT
- Title: Graph signal processing for machine learning: A review and new
perspectives
- Authors: Xiaowen Dong, Dorina Thanou, Laura Toni, Michael Bronstein, Pascal
Frossard
- Abstract summary: We review a few important contributions made by GSP concepts and tools, such as graph filters and transforms, to the development of novel machine learning algorithms.
We discuss exploiting data structure and relational priors, improving data and computational efficiency, and enhancing model interpretability.
We provide new perspectives on future development of GSP techniques that may serve as a bridge between applied mathematics and signal processing on one side, and machine learning and network science on the other.
- Score: 57.285378618394624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The effective representation, processing, analysis, and visualization of
large-scale structured data, especially those related to complex domains such
as networks and graphs, are one of the key questions in modern machine
learning. Graph signal processing (GSP), a vibrant branch of signal processing
models and algorithms that aims at handling data supported on graphs, opens new
paths of research to address this challenge. In this article, we review a few
important contributions made by GSP concepts and tools, such as graph filters
and transforms, to the development of novel machine learning algorithms. In
particular, our discussion focuses on the following three aspects: exploiting
data structure and relational priors, improving data and computational
efficiency, and enhancing model interpretability. Furthermore, we provide new
perspectives on future development of GSP techniques that may serve as a bridge
between applied mathematics and signal processing on one side, and machine
learning and network science on the other. Cross-fertilization across these
different disciplines may help unlock the numerous challenges of complex data
analysis in the modern age.
Related papers
- A Review of Graph-Powered Data Quality Applications for IoT Monitoring Sensor Networks [0.8192907805418583]
We focus on graph-based models for data quality control in monitoring sensor networks.
We identify future trends and challenges such as graph-based models for digital twins or model transferability and generalization.
arXiv Detail & Related papers (2024-10-28T13:30:22Z) - Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
arXiv Detail & Related papers (2024-08-26T06:36:42Z) - A Survey of Data-Efficient Graph Learning [16.053913182723143]
We introduce a novel concept of Data-Efficient Graph Learning (DEGL) as a research frontier.
We systematically review recent advances on several key aspects, including self-supervised graph learning, semi-supervised graph learning, and few-shot graph learning.
arXiv Detail & Related papers (2024-02-01T09:28:48Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.
The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.
This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
We focus on reviewing privacy-preserving techniques of graph machine learning.
We first review methods for generating privacy-preserving graph data.
Then we describe methods for transmitting privacy-preserved information.
arXiv Detail & Related papers (2023-07-10T04:30:23Z) - Recent Advances in Graph-based Machine Learning for Applications in
Smart Urban Transportation Systems [7.335098632782098]
The chapter presents background information on the key technical challenges for ITS design, along with a review of research methods.
We provide an in-depth review of graph-based machine learning methods, including basic concepts of graphs, graph data representation, graph neural network architectures and their relation to ITS applications.
arXiv Detail & Related papers (2023-06-02T05:50:57Z) - GraphMAE: Self-Supervised Masked Graph Autoencoders [52.06140191214428]
We present a masked graph autoencoder GraphMAE that mitigates issues for generative self-supervised graph learning.
We conduct extensive experiments on 21 public datasets for three different graph learning tasks.
The results manifest that GraphMAE--a simple graph autoencoder with our careful designs--can consistently generate outperformance over both contrastive and generative state-of-the-art baselines.
arXiv Detail & Related papers (2022-05-22T11:57:08Z) - A Computational Framework for Modeling Complex Sensor Network Data Using
Graph Signal Processing and Graph Neural Networks in Structural Health
Monitoring [0.7519872646378835]
We present a framework based on Complex Network Modeling, integrating Graph Signal Processing (GSP) and Graph Neural Network (GNN) approaches.
We focus on a prominent real-world structural health monitoring use case, i.e., modeling and analyzing sensor data (strain, vibration) of a large bridge in the Netherlands.
arXiv Detail & Related papers (2021-05-01T10:45:57Z) - Graph Signal Processing for Geometric Data and Beyond: Theory and
Applications [55.81966207837108]
Graph Signal Processing (GSP) enables processing signals that reside on irregular domains.
GSP methodologies for geometric data in a unified manner by bridging the connections between geometric data and graphs.
Recently developed Graph Neural Networks (GNNs) interpret the operation of these networks from the perspective of GSP.
arXiv Detail & Related papers (2020-08-05T03:20:16Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.