Towards Graph Prompt Learning: A Survey and Beyond
- URL: http://arxiv.org/abs/2408.14520v3
- Date: Tue, 24 Sep 2024 09:43:35 GMT
- Title: Towards Graph Prompt Learning: A Survey and Beyond
- Authors: Qingqing Long, Yuchen Yan, Peiyan Zhang, Chen Fang, Wentao Cui, Zhiyuan Ning, Meng Xiao, Ning Cao, Xiao Luo, Lingjun Xu, Shiyue Jiang, Zheng Fang, Chong Chen, Xian-Sheng Hua, Yuanchun Zhou,
- Abstract summary: Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability.
This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications.
- Score: 38.55555996765227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale "pre-train and prompt learning" paradigms have demonstrated remarkable adaptability, enabling broad applications across diverse domains such as question answering, image recognition, and multimodal retrieval. This approach fully leverages the potential of large-scale pre-trained models, reducing downstream data requirements and computational costs while enhancing model applicability across various tasks. Graphs, as versatile data structures that capture relationships between entities, play pivotal roles in fields such as social network analysis, recommender systems, and biological graphs. Despite the success of pre-train and prompt learning paradigms in Natural Language Processing (NLP) and Computer Vision (CV), their application in graph domains remains nascent. In graph-structured data, not only do the node and edge features often have disparate distributions, but the topological structures also differ significantly. This diversity in graph data can lead to incompatible patterns or gaps between pre-training and fine-tuning on downstream graphs. We aim to bridge this gap by summarizing methods for alleviating these disparities. This includes exploring prompt design methodologies, comparing related techniques, assessing application scenarios and datasets, and identifying unresolved problems and challenges. This survey categorizes over 100 relevant works in this field, summarizing general design principles and the latest applications, including text-attributed graphs, molecules, proteins, and recommendation systems. Through this extensive review, we provide a foundational understanding of graph prompt learning, aiming to impact not only the graph mining community but also the broader Artificial General Intelligence (AGI) community.
Related papers
- Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
We provide a review and summary of the latest approaches, strategies, and insights that address distribution shifts within the context of graph learning.
We categorize existing graph learning methods into several essential scenarios, including graph domain adaptation learning, graph out-of-distribution learning, and graph continual learning.
We discuss the potential applications and future directions for graph learning under distribution shifts with a systematic analysis of the current state in this field.
arXiv Detail & Related papers (2024-02-26T07:52:40Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Graph Neural Networks: Methods, Applications, and Opportunities [1.2183405753834562]
This article provides a comprehensive survey of graph neural networks (GNNs) in each learning setting.
The approaches for each learning task are analyzed from both theoretical as well as empirical standpoints.
Various applications and benchmark datasets are also provided, along with open challenges still plaguing the general applicability of GNNs.
arXiv Detail & Related papers (2021-08-24T13:46:19Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Quantifying Challenges in the Application of Graph Representation
Learning [0.0]
We provide an application oriented perspective to a set of popular embedding approaches.
We evaluate their representational power with respect to real-world graph properties.
Our results suggest that "one-to-fit-all" GRL approaches are hard to define in real-world scenarios.
arXiv Detail & Related papers (2020-06-18T03:19:43Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.