Exploring Image Enhancement for Salient Object Detection in Low Light
Images
- URL: http://arxiv.org/abs/2007.16124v1
- Date: Fri, 31 Jul 2020 15:09:03 GMT
- Title: Exploring Image Enhancement for Salient Object Detection in Low Light
Images
- Authors: Xin Xu, Shiqin Wang, Zheng Wang, Xiaolong Zhang, and Ruimin Hu
- Abstract summary: We propose an image enhancement approach to facilitate the salient object detection in low light images.
The proposed model embeds the physical lighting model into the deep neural network to describe the degradation of low light images.
We construct a low light Images dataset with pixel-level human-labeled ground-truth annotations and report promising results.
- Score: 27.61080096436953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low light images captured in a non-uniform illumination environment usually
are degraded with the scene depth and the corresponding environment lights.
This degradation results in severe object information loss in the degraded
image modality, which makes the salient object detection more challenging due
to low contrast property and artificial light influence. However, existing
salient object detection models are developed based on the assumption that the
images are captured under a sufficient brightness environment, which is
impractical in real-world scenarios. In this work, we propose an image
enhancement approach to facilitate the salient object detection in low light
images. The proposed model directly embeds the physical lighting model into the
deep neural network to describe the degradation of low light images, in which
the environment light is treated as a point-wise variate and changes with local
content. Moreover, a Non-Local-Block Layer is utilized to capture the
difference of local content of an object against its local neighborhood
favoring regions. To quantitative evaluation, we construct a low light Images
dataset with pixel-level human-labeled ground-truth annotations and report
promising results on four public datasets and our benchmark dataset.
Related papers
- Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation [33.142262765252795]
Detectors trained on well-lit data exhibit significant performance degradation on low-light data due to low visibility.
We propose to boost low-light object detection with zero-shot day-night domain adaptation.
Our method generalizes a detector from well-lit scenarios to low-light ones without requiring real low-light data.
arXiv Detail & Related papers (2023-12-02T20:11:48Z) - Improving Lens Flare Removal with General Purpose Pipeline and Multiple
Light Sources Recovery [69.71080926778413]
flare artifacts can affect image visual quality and downstream computer vision tasks.
Current methods do not consider automatic exposure and tone mapping in image signal processing pipeline.
We propose a solution to improve the performance of lens flare removal by revisiting the ISP and design a more reliable light sources recovery strategy.
arXiv Detail & Related papers (2023-08-31T04:58:17Z) - Progressive Domain Adaptation with Contrastive Learning for Object
Detection in the Satellite Imagery [0.0]
State-of-the-art object detection methods largely fail to identify small and dense objects.
We propose a small object detection pipeline that improves the feature extraction process.
We show we can alleviate the degradation of object identification in previously unseen datasets.
arXiv Detail & Related papers (2022-09-06T15:16:35Z) - Semi-supervised atmospheric component learning in low-light image
problem [0.0]
Ambient lighting conditions play a crucial role in determining the perceptual quality of images from photographic devices.
This study presents a semi-supervised training method using no-reference image quality metrics for low-light image restoration.
arXiv Detail & Related papers (2022-04-15T17:06:33Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
We propose a new low-light image enhancement dataset consisting of misaligned training images with real-world corruptions.
Our model achieves state-of-the-art performances on both the newly proposed dataset and other popular low-light datasets.
arXiv Detail & Related papers (2022-01-10T03:12:52Z) - NOD: Taking a Closer Look at Detection under Extreme Low-Light
Conditions with Night Object Detection Dataset [25.29013780731876]
Low light proves more difficult for machine cognition than previously thought.
We present a large-scale dataset showing dynamic scenes captured on the streets at night.
We propose to incorporate an image enhancement module into the object detection framework and two novel data augmentation techniques.
arXiv Detail & Related papers (2021-10-20T03:44:04Z) - Spatially-Varying Outdoor Lighting Estimation from Intrinsics [66.04683041837784]
We present SOLID-Net, a neural network for spatially-varying outdoor lighting estimation.
We generate spatially-varying local lighting environment maps by combining global sky environment map with warped image information.
Experiments on both synthetic and real datasets show that SOLID-Net significantly outperforms previous methods.
arXiv Detail & Related papers (2021-04-09T02:28:54Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z) - Scene relighting with illumination estimation in the latent space on an
encoder-decoder scheme [68.8204255655161]
In this report we present methods that we tried to achieve that goal.
Our models are trained on a rendered dataset of artificial locations with varied scene content, light source location and color temperature.
With this dataset, we used a network with illumination estimation component aiming to infer and replace light conditions in the latent space representation of the concerned scenes.
arXiv Detail & Related papers (2020-06-03T15:25:11Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.