Enhancing Low-Light Images in Real World via Cross-Image Disentanglement
- URL: http://arxiv.org/abs/2201.03145v1
- Date: Mon, 10 Jan 2022 03:12:52 GMT
- Title: Enhancing Low-Light Images in Real World via Cross-Image Disentanglement
- Authors: Lanqing Guo, Renjie Wan, Wenhan Yang, Alex Kot and Bihan Wen
- Abstract summary: We propose a new low-light image enhancement dataset consisting of misaligned training images with real-world corruptions.
Our model achieves state-of-the-art performances on both the newly proposed dataset and other popular low-light datasets.
- Score: 58.754943762945864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Images captured in the low-light condition suffer from low visibility and
various imaging artifacts, e.g., real noise. Existing supervised enlightening
algorithms require a large set of pixel-aligned training image pairs, which are
hard to prepare in practice. Though weakly-supervised or unsupervised methods
can alleviate such challenges without using paired training images, some
real-world artifacts inevitably get falsely amplified because of the lack of
corresponded supervision. In this paper, instead of using perfectly aligned
images for training, we creatively employ the misaligned real-world images as
the guidance, which are considerably easier to collect. Specifically, we
propose a Cross-Image Disentanglement Network (CIDN) to separately extract
cross-image brightness and image-specific content features from
low/normal-light images. Based on that, CIDN can simultaneously correct the
brightness and suppress image artifacts in the feature domain, which largely
increases the robustness to the pixel shifts. Furthermore, we collect a new
low-light image enhancement dataset consisting of misaligned training images
with real-world corruptions. Experimental results show that our model achieves
state-of-the-art performances on both the newly proposed dataset and other
popular low-light datasets.
Related papers
- You Only Need One Color Space: An Efficient Network for Low-light Image Enhancement [50.37253008333166]
Low-Light Image Enhancement (LLIE) task tends to restore the details and visual information from corrupted low-light images.
We propose a novel trainable color space, named Horizontal/Vertical-Intensity (HVI)
It not only decouples brightness and color from RGB channels to mitigate the instability during enhancement but also adapts to low-light images in different illumination ranges due to the trainable parameters.
arXiv Detail & Related papers (2024-02-08T16:47:43Z) - Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks [50.822601495422916]
We propose to utilize exposure bracketing photography to unify image restoration and enhancement tasks.
Due to the difficulty in collecting real-world pairs, we suggest a solution that first pre-trains the model with synthetic paired data.
In particular, a temporally modulated recurrent network (TMRNet) and self-supervised adaptation method are proposed.
arXiv Detail & Related papers (2024-01-01T14:14:35Z) - Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation [33.142262765252795]
Detectors trained on well-lit data exhibit significant performance degradation on low-light data due to low visibility.
We propose to boost low-light object detection with zero-shot day-night domain adaptation.
Our method generalizes a detector from well-lit scenarios to low-light ones without requiring real low-light data.
arXiv Detail & Related papers (2023-12-02T20:11:48Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
Low-light environments usually lead to less informative large-scale dark areas.
We propose to integrate the effectiveness of gamma correction with the strong modelling capacities of deep networks.
Because exponential operation introduces high computational complexity, we propose to use Taylor Series to approximate gamma correction.
arXiv Detail & Related papers (2023-08-16T08:46:51Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
This paper presents the deep compensation network unfolding (DCUNet) for restoring light field (LF) images captured under low-light conditions.
The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result.
To properly leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module.
arXiv Detail & Related papers (2023-08-10T07:53:06Z) - Enhance Images as You Like with Unpaired Learning [8.104571453311442]
We propose a lightweight one-path conditional generative adversarial network (cGAN) to learn a one-to-many relation from low-light to normal-light image space.
Our network learns to generate a collection of enhanced images from a given input conditioned on various reference images.
Our model achieves competitive visual and quantitative results on par with fully supervised methods on both noisy and clean datasets.
arXiv Detail & Related papers (2021-10-04T03:00:44Z) - R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network [7.755223662467257]
We propose a novel Real-low to Real-normal Network for low-light image enhancement, dubbed R2RNet.
Unlike most previous methods trained on synthetic images, we collect the first Large-Scale Real-World paired low/normal-light images dataset.
Our method can properly improve the contrast and suppress noise simultaneously.
arXiv Detail & Related papers (2021-06-28T09:33:13Z) - LEUGAN:Low-Light Image Enhancement by Unsupervised Generative
Attentional Networks [4.584570928928926]
We propose an unsupervised generation network with attention-guidance to handle the low-light image enhancement task.
Specifically, our network contains two parts: an edge auxiliary module that restores sharper edges and an attention guidance module that recovers more realistic colors.
Experiments validate that our proposed algorithm performs favorably against state-of-the-art methods.
arXiv Detail & Related papers (2020-12-24T16:49:19Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
We learn a two-stage GAN-based framework to enhance the real-world low-light images in a fully unsupervised fashion.
Our proposed method outperforms the state-of-the-art unsupervised image enhancement methods in terms of both illumination enhancement and noise reduction.
arXiv Detail & Related papers (2020-05-06T13:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.