論文の概要: KAPLAN: A 3D Point Descriptor for Shape Completion
- arxiv url: http://arxiv.org/abs/2008.00096v2
- Date: Fri, 16 Oct 2020 11:21:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 06:47:07.768924
- Title: KAPLAN: A 3D Point Descriptor for Shape Completion
- Title(参考訳): KAPLAN: シェイプコンプリートのための3Dポイントディスクリプタ
- Authors: Audrey Richard, Ian Cherabier, Martin R. Oswald, Marc Pollefeys,
Konrad Schindler
- Abstract要約: KAPLANは、一連の2D畳み込みを通じて局所的な形状情報を集約する3Dポイント記述子である。
各平面において、正規点や平面間距離のような点特性は2次元グリッドに集約され、効率的な2次元畳み込みエンコーダを持つ特徴表現に抽象化される。
公開データセットの実験では、KAPLANが3D形状の完成のために最先端のパフォーマンスを達成することが示されている。
- 参考スコア(独自算出の注目度): 80.15764700137383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel 3D shape completion method that operates directly on
unstructured point clouds, thus avoiding resource-intensive data structures
like voxel grids. To this end, we introduce KAPLAN, a 3D point descriptor that
aggregates local shape information via a series of 2D convolutions. The key
idea is to project the points in a local neighborhood onto multiple planes with
different orientations. In each of those planes, point properties like normals
or point-to-plane distances are aggregated into a 2D grid and abstracted into a
feature representation with an efficient 2D convolutional encoder. Since all
planes are encoded jointly, the resulting representation nevertheless can
capture their correlations and retains knowledge about the underlying 3D shape,
without expensive 3D convolutions. Experiments on public datasets show that
KAPLAN achieves state-of-the-art performance for 3D shape completion.
- Abstract(参考訳): 本研究では,非構造点雲を直接操作し,ボクセルグリッドのような資源集約的なデータ構造を避ける新しい3次元形状補完手法を提案する。
そこで本研究では,局所的な形状情報を2次元畳み込みによって集約する3次元点記述子KAPLANを紹介する。
鍵となる考え方は、局所近傍の点を異なる向きを持つ複数の平面に投影することである。
各平面において、正規点や平面間距離のような点特性は2次元グリッドに集約され、効率的な2次元畳み込みエンコーダを持つ特徴表現に抽象化される。
すべての平面は共同で符号化されるので、結果として得られる表現はそれらの相関を捉え、高価な3D畳み込みなしに基礎となる3次元形状に関する知識を保持することができる。
公開データセットの実験では、KAPLANは3D形状の完成のために最先端のパフォーマンスを達成する。
関連論文リスト
- Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
我々は、任意の幾何学と位相の不規則な3次元点雲を表現するために、Flattning-Netと呼ばれる教師なしのディープニューラルネットワークを提案する。
我々の手法は、現在の最先端の競合相手に対して好意的に機能する。
論文 参考訳(メタデータ) (2022-12-17T15:05:25Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [15.244852122106634]
形状認識型2D/3D制約を3D検出フレームワークに組み込む手法を提案する。
具体的には、ディープニューラルネットワークを用いて、2次元画像領域の区別された2Dキーポイントを学習する。
2D/3Dキーポイントの基礎的真理を生成するために、自動的なモデル適合手法が提案されている。
論文 参考訳(メタデータ) (2021-08-25T08:50:06Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z) - SeqXY2SeqZ: Structure Learning for 3D Shapes by Sequentially Predicting
1D Occupancy Segments From 2D Coordinates [61.04823927283092]
本稿では,各2次元位置における関数の出力が内部の線分列である2次元関数を用いて3次元形状を表現することを提案する。
本研究では,SeqXY2SeqZと呼ばれるセック2Seqモデルを用いて,2つの任意の軸に沿った2次元座標列から3つの軸に沿った1次元位置の列への写像を学習する手法を提案する。
実験の結果,SeqXY2SeqZは広く使用されているベンチマークで最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-03-12T00:24:36Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) は連続的な出力を提供し、複数のトポロジを扱える。
IF-NetsはShapeNetにおける3次元オブジェクト再構成における先行作業よりも明らかに優れており、より正確な3次元人間の再構成が得られる。
論文 参考訳(メタデータ) (2020-03-03T11:14:29Z) - 3D Shape Segmentation with Geometric Deep Learning [2.512827436728378]
本稿では,部分分割問題としてセグメント化全体を解くために,3次元形状の3次元拡張ビューを生成するニューラルネットワークベースのアプローチを提案する。
提案手法は,公開データセットの3次元形状と,フォトグラム法を用いて再構成した実物体を用いて検証する。
論文 参考訳(メタデータ) (2020-02-02T14:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。