KAPLAN: A 3D Point Descriptor for Shape Completion
- URL: http://arxiv.org/abs/2008.00096v2
- Date: Fri, 16 Oct 2020 11:21:57 GMT
- Title: KAPLAN: A 3D Point Descriptor for Shape Completion
- Authors: Audrey Richard, Ian Cherabier, Martin R. Oswald, Marc Pollefeys,
Konrad Schindler
- Abstract summary: KAPLAN is a 3D point descriptor that aggregates local shape information via a series of 2D convolutions.
In each of those planes, point properties like normals or point-to-plane distances are aggregated into a 2D grid and abstracted into a feature representation with an efficient 2D convolutional encoder.
Experiments on public datasets show that KAPLAN achieves state-of-the-art performance for 3D shape completion.
- Score: 80.15764700137383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel 3D shape completion method that operates directly on
unstructured point clouds, thus avoiding resource-intensive data structures
like voxel grids. To this end, we introduce KAPLAN, a 3D point descriptor that
aggregates local shape information via a series of 2D convolutions. The key
idea is to project the points in a local neighborhood onto multiple planes with
different orientations. In each of those planes, point properties like normals
or point-to-plane distances are aggregated into a 2D grid and abstracted into a
feature representation with an efficient 2D convolutional encoder. Since all
planes are encoded jointly, the resulting representation nevertheless can
capture their correlations and retains knowledge about the underlying 3D shape,
without expensive 3D convolutions. Experiments on public datasets show that
KAPLAN achieves state-of-the-art performance for 3D shape completion.
Related papers
- Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [15.244852122106634]
We propose an approach for incorporating the shape-aware 2D/3D constraints into the 3D detection framework.
Specifically, we employ the deep neural network to learn distinguished 2D keypoints in the 2D image domain.
For generating the ground truth of 2D/3D keypoints, an automatic model-fitting approach has been proposed.
arXiv Detail & Related papers (2021-08-25T08:50:06Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z) - SeqXY2SeqZ: Structure Learning for 3D Shapes by Sequentially Predicting
1D Occupancy Segments From 2D Coordinates [61.04823927283092]
We propose to represent 3D shapes using 2D functions, where the output of the function at each 2D location is a sequence of line segments inside the shape.
We implement this approach using a Seq2Seq model with attention, called SeqXY2SeqZ, which learns the mapping from a sequence of 2D coordinates along two arbitrary axes to a sequence of 1D locations along the third axis.
Our experiments show that SeqXY2SeqZ outperforms the state-ofthe-art methods under widely used benchmarks.
arXiv Detail & Related papers (2020-03-12T00:24:36Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z) - 3D Shape Segmentation with Geometric Deep Learning [2.512827436728378]
We propose a neural-network based approach that produces 3D augmented views of the 3D shape to solve the whole segmentation as sub-segmentation problems.
We validate our approach using 3D shapes of publicly available datasets and of real objects that are reconstructed using photogrammetry techniques.
arXiv Detail & Related papers (2020-02-02T14:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.