論文の概要: Relational Teacher Student Learning with Neural Label Embedding for
Device Adaptation in Acoustic Scene Classification
- arxiv url: http://arxiv.org/abs/2008.00110v1
- Date: Fri, 31 Jul 2020 23:07:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 07:07:27.730440
- Title: Relational Teacher Student Learning with Neural Label Embedding for
Device Adaptation in Acoustic Scene Classification
- Title(参考訳): 音響シーン分類におけるデバイス適応のための神経ラベル埋め込みによるリレーショナル教師学生学習
- Authors: Hu Hu, Sabato Marco Siniscalchi, Yannan Wang, Chin-Hui Lee
- Abstract要約: 音響シーン分類におけるデバイスミスマッチ問題に対処するドメイン適応フレームワークを提案する。
音響シーンのクラス間の構造的関係を考慮し、本提案手法は本質的にデバイスに依存しない関係を捉える。
トレーニング段階では、転写可能な知識はソースドメインからNLEに凝縮される。
適応段階では、ペアのソースターゲットデータを使用しずに適応対象モデルを学習するために、新しいRTSL戦略を採用する。
- 参考スコア(独自算出の注目度): 49.0621360050418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a domain adaptation framework to address the device
mismatch issue in acoustic scene classification leveraging upon neural label
embedding (NLE) and relational teacher student learning (RTSL). Taking into
account the structural relationships between acoustic scene classes, our
proposed framework captures such relationships which are intrinsically
device-independent. In the training stage, transferable knowledge is condensed
in NLE from the source domain. Next in the adaptation stage, a novel RTSL
strategy is adopted to learn adapted target models without using paired
source-target data often required in conventional teacher student learning. The
proposed framework is evaluated on the DCASE 2018 Task1b data set. Experimental
results based on AlexNet-L deep classification models confirm the effectiveness
of our proposed approach for mismatch situations. NLE-alone adaptation compares
favourably with the conventional device adaptation and teacher student based
adaptation techniques. NLE with RTSL further improves the classification
accuracy.
- Abstract(参考訳): 本稿では,ニューラルラベル埋め込み(NLE)と関係教師学習(RTSL)を活用した音響シーン分類におけるデバイスミスマッチ問題に対処するドメイン適応フレームワークを提案する。
提案手法では,音響シーンクラス間の構造的関係を考慮し,デバイスに依存しない関係を捉える。
トレーニング段階では、転写可能な知識はソースドメインからNLEに凝縮される。
次に、適応段階において、従来の教師学習でしばしば必要とされるペア・ソース・ターゲットデータを用いることなく、適応対象モデルを学習するための新しいRTSL戦略を採用する。
提案するフレームワークはDCASE 2018 Task1bデータセットで評価されている。
AlexNet-L深層分類モデルによる実験結果から,提案手法の有効性が確認された。
NLE-alone適応は、従来のデバイス適応や教師による適応技術と好適に比較できる。
RTSLによるNLEはさらに分類精度を向上させる。
関連論文リスト
- Combining Denoising Autoencoders with Contrastive Learning to fine-tune Transformer Models [0.0]
本研究は,分類タスクのベースモデルを調整するための3段階手法を提案する。
我々は,DAE(Denoising Autoencoder)を用いたさらなるトレーニングを行うことで,モデルの信号をデータ配信に適用する。
さらに、教師付きコントラスト学習のための新しいデータ拡張手法を導入し、不均衡なデータセットを修正する。
論文 参考訳(メタデータ) (2024-05-23T11:08:35Z) - Latent Alignment with Deep Set EEG Decoders [44.128689862889715]
本稿では,脳波伝達学習大会のベンチマークで優勝した潜在アライメント手法を紹介する。
我々は,その定式化を,与えられた被験者の試行セットに適用したディープセットとして提示する。
実験の結果,深層学習モデルにおける後段の統計的分布アライメントの実行は,分類精度に有益であることが示唆された。
論文 参考訳(メタデータ) (2023-11-29T12:40:45Z) - IDA: Informed Domain Adaptive Semantic Segmentation [51.12107564372869]
クラスレベルのセグメンテーション性能に基づいてデータを混合する自己学習フレームワークであるDomain Informed Adaptation (IDA) モデルを提案する。
IDAモデルでは、クラスレベルの性能を期待信頼スコア(ECS)によって追跡し、動的スケジュールを用いて異なる領域のデータに対する混合比を決定する。
提案手法は,GTA-Vの都市景観への適応において1.1 mIoU,SynTHIAの都市への適応において0.9 mIoUのマージンで,最先端のUDA-SS法よりも優れる。
論文 参考訳(メタデータ) (2023-03-05T18:16:34Z) - Contextual Squeeze-and-Excitation for Efficient Few-Shot Image
Classification [57.36281142038042]
本稿では,事前学習したニューラルネットワークを新しいタスクで調整し,性能を大幅に向上させる,Contextual Squeeze-and-Excitation (CaSE) という適応ブロックを提案する。
また、メタトレーニングされたCaSEブロックと微調整ルーチンを利用して効率よく適応する、アッパーCaSEと呼ばれるコーディネートダイスに基づく新しいトレーニングプロトコルを提案する。
論文 参考訳(メタデータ) (2022-06-20T15:25:08Z) - Deep Neural Decision Forest for Acoustic Scene Classification [45.886356124352226]
音響シーン分類(ASC)は、録音環境の特性に基づいて音声クリップを分類することを目的としている。
深層神経決定林(DNDF)を用いたASCの新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-07T14:39:42Z) - Unified Instance and Knowledge Alignment Pretraining for Aspect-based
Sentiment Analysis [96.53859361560505]
Aspect-based Sentiment Analysis (ABSA) は、ある側面に対する感情の極性を決定することを目的としている。
事前トレーニングと下流ABSAデータセットの間には、常に深刻なドメインシフトが存在する。
我々は,バニラ・プレトレイン・ファインチューンパイプラインにアライメント事前訓練フレームワークを導入する。
論文 参考訳(メタデータ) (2021-10-26T04:03:45Z) - Open-set Short Utterance Forensic Speaker Verification using
Teacher-Student Network with Explicit Inductive Bias [59.788358876316295]
そこで本研究では,小規模の法定フィールドデータセット上での話者検証を改善するためのパイプラインソリューションを提案する。
大規模領域外データセットを活用することで,教師学習のための知識蒸留に基づく目的関数を提案する。
提案する目的関数は,短時間の発話における教師学生の学習性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2020-09-21T00:58:40Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
機械学習アルゴリズムは、トレーニング(ソース)とテスト(ターゲット)データの分散のミスマッチの影響を受けやすい。
本研究では,ターゲット領域音響シーンの各周波数帯域の1次及び2次サンプル統計値と,ソース領域学習データセットの1次と2次サンプル統計値との整合性を有する教師なし領域適応手法を提案する。
提案手法は,文献にみられる最先端の教師なし手法よりも,ソース・ドメインの分類精度とターゲット・ドメインの分類精度の両面で優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:56:05Z) - Statistical Context-Dependent Units Boundary Correction for Corpus-based
Unit-Selection Text-to-Speech [1.4337588659482519]
本稿では, 分割の精度を向上させるために, 単位選択テキスト音声(TTS)システムに適用するための, 話者適応のための革新的な手法を提案する。
従来の話者適応手法とは違って,言語分析手法を応用した文脈依存特性のみの利用を目標としている。
論文 参考訳(メタデータ) (2020-03-05T12:42:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。