Stochastic Bundle Adjustment for Efficient and Scalable 3D
Reconstruction
- URL: http://arxiv.org/abs/2008.00446v1
- Date: Sun, 2 Aug 2020 10:26:09 GMT
- Title: Stochastic Bundle Adjustment for Efficient and Scalable 3D
Reconstruction
- Authors: Lei Zhou, Zixin Luo, Mingmin Zhen, Tianwei Shen, Shiwei Li, Zhuofei
Huang, Tian Fang, Long Quan
- Abstract summary: Current bundle adjustment solvers such as the Levenberg-Marquardt (LM) algorithm are limited by the bottleneck in solving the Reduced Camera System (RCS) whose dimension is proportional to the camera number.
We propose a bundle adjustment algorithm which seeks to decompose the RCS approximately inside the LM to improve the efficiency and scalability.
- Score: 43.736296034673124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current bundle adjustment solvers such as the Levenberg-Marquardt (LM)
algorithm are limited by the bottleneck in solving the Reduced Camera System
(RCS) whose dimension is proportional to the camera number. When the problem is
scaled up, this step is neither efficient in computation nor manageable for a
single compute node. In this work, we propose a stochastic bundle adjustment
algorithm which seeks to decompose the RCS approximately inside the LM
iterations to improve the efficiency and scalability. It first reformulates the
quadratic programming problem of an LM iteration based on the clustering of the
visibility graph by introducing the equality constraints across clusters. Then,
we propose to relax it into a chance constrained problem and solve it through
sampled convex program. The relaxation is intended to eliminate the
interdependence between clusters embodied by the constraints, so that a large
RCS can be decomposed into independent linear sub-problems. Numerical
experiments on unordered Internet image sets and sequential SLAM image sets, as
well as distributed experiments on large-scale datasets, have demonstrated the
high efficiency and scalability of the proposed approach. Codes are released at
https://github.com/zlthinker/STBA.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - A Deep Learning algorithm to accelerate Algebraic Multigrid methods in
Finite Element solvers of 3D elliptic PDEs [0.0]
We introduce a novel Deep Learning algorithm that minimizes the computational cost of the Algebraic multigrid method when used as a finite element solver.
We experimentally prove that the pooling successfully reduces the computational cost of processing a large sparse matrix and preserves the features needed for the regression task at hand.
arXiv Detail & Related papers (2023-04-21T09:18:56Z) - Fast and Robust Non-Rigid Registration Using Accelerated
Majorization-Minimization [35.66014845211251]
Non-rigid registration, which deforms a source shape in a non-rigid way to align with a target shape, is a classical problem in computer vision.
Existing methods typically adopt the $ell_p$ type robust norm to measure the alignment error and regularize the smoothness of deformation.
We propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization.
arXiv Detail & Related papers (2022-06-07T16:00:33Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Smooth Bilevel Programming for Sparse Regularization [5.177947445379688]
Iteratively reweighted least square (IRLS) is a popular approach to solve sparsity-enforcing regression problems in machine learning.
We show how a surprisingly reparametrization of IRLS, coupled with a bilevel scheme, achieves topranging of sparsity.
arXiv Detail & Related papers (2021-06-02T19:18:22Z) - Covariance-Free Sparse Bayesian Learning [62.24008859844098]
We introduce a new SBL inference algorithm that avoids explicit inversions of the covariance matrix.
Our method can be up to thousands of times faster than existing baselines.
We showcase how our new algorithm enables SBL to tractably tackle high-dimensional signal recovery problems.
arXiv Detail & Related papers (2021-05-21T16:20:07Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
In many applications, we need algorithms which can align partially overlapping point sets are invariant to the corresponding corresponding RPM algorithm.
We first show that the objective is a cubic bound function. We then utilize the convex envelopes of trilinear and bilinear monomial transformations to derive its lower bound.
We next develop a branch-and-bound (BnB) algorithm which only branches over the transformation variables and runs efficiently.
arXiv Detail & Related papers (2021-01-19T04:24:23Z) - Quasi-Newton Solver for Robust Non-Rigid Registration [35.66014845211251]
We propose a formulation for robust non-rigid registration based on a globally smooth robust estimator for data fitting and regularization.
We apply the majorization-minimization algorithm to the problem, which reduces each iteration to solving a simple least-squares problem with L-BFGS.
arXiv Detail & Related papers (2020-04-09T01:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.