Exact and Heuristic Algorithms for Constrained Biclustering
- URL: http://arxiv.org/abs/2508.05493v1
- Date: Thu, 07 Aug 2025 15:29:22 GMT
- Title: Exact and Heuristic Algorithms for Constrained Biclustering
- Authors: Antonio M. Sudoso,
- Abstract summary: Biclustering, also known as co-clustering or two-way clustering, simultaneously partitions the rows and columns of a data matrix to reveal submatrices with coherent patterns.<n>We study constrained biclustering with pairwise constraints, namely must-link and cannot-link constraints, which specify whether objects should belong to the same or different biclusters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biclustering, also known as co-clustering or two-way clustering, simultaneously partitions the rows and columns of a data matrix to reveal submatrices with coherent patterns. Incorporating background knowledge into clustering to enhance solution quality and interpretability has attracted growing interest in mathematical optimization and machine learning research. Extending this paradigm to biclustering enables prior information to guide the joint grouping of rows and columns. We study constrained biclustering with pairwise constraints, namely must-link and cannot-link constraints, which specify whether objects should belong to the same or different biclusters. As a model problem, we address the constrained version of the k-densest disjoint biclique problem, which aims to identify k disjoint complete bipartite subgraphs (called bicliques) in a weighted complete bipartite graph, maximizing the total density while satisfying pairwise constraints. We propose both exact and heuristic algorithms. The exact approach is a tailored branch-and-cut algorithm based on a low-dimensional semidefinite programming (SDP) relaxation, strengthened with valid inequalities and solved in a cutting-plane fashion. Exploiting integer programming tools, a rounding scheme converts SDP solutions into feasible biclusterings at each node. For large-scale instances, we introduce an efficient heuristic based on the low-rank factorization of the SDP. The resulting nonlinear optimization problem is tackled with an augmented Lagrangian method, where the subproblem is solved by decomposition through a block-coordinate projected gradient algorithm. Extensive experiments on synthetic and real-world datasets show that the exact method significantly outperforms general-purpose solvers, while the heuristic achieves high-quality solutions efficiently on large instances.
Related papers
- A Graph-Partitioning Based Continuous Optimization Approach to Semi-supervised Clustering Problems [24.208152437317768]
We view the semi-supervised clustering task as a partitioning problem on a graph associated with the given dataset.<n>We propose a block coordinate descent algorithm to efficiently solve this model.<n>We can construct the clusters that theoretically meet the must-link constraints under mild assumptions.
arXiv Detail & Related papers (2025-03-06T14:02:28Z) - A Semidefinite Programming-Based Branch-and-Cut Algorithm for Biclustering [0.0]
We present a tailored branch-and-cut algorithm for biclustering problems.<n>We show that the proposed algorithm can solve instances 20 times larger than those handled by general-purpose solvers.
arXiv Detail & Related papers (2024-03-17T21:43:19Z) - One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
We show how to enforce a one-step normalized cut for bipartite graphs, especially with linear-time complexity.
In this paper, we first characterize a novel one-step bipartite graph cut criterion with normalized constraints, and theoretically prove its equivalence to a trace problem.
We extend this cut criterion to a scalable subspace clustering approach, where adaptive anchor learning, bipartite graph learning, and one-step normalized bipartite graph partitioning are simultaneously modeled.
arXiv Detail & Related papers (2023-05-12T11:27:20Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs [5.301300942803395]
Cut-based directed graph (digraph) clustering often focuses on finding dense within-cluster or sparse between-cluster connections.
For flow-based clusterings the edges between clusters tend to be oriented in one direction and have been found in migration data, food webs, and trade data.
arXiv Detail & Related papers (2022-03-02T20:07:04Z) - An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering [0.5801044612920815]
We present a new branch-and-bound algorithm for semi-supervised MSSC.
Background knowledge is incorporated as pairwise must-link and cannot-link constraints.
For the first time, the proposed global optimization algorithm efficiently manages to solve real-world instances up to 800 data points.
arXiv Detail & Related papers (2021-11-30T17:08:53Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
This paper explores the problem of clustering ensemble, which aims to combine multiple base clusterings to produce better performance than that of the individual one.
We propose a novel low-rank tensor approximation-based method to solve the problem from a global perspective.
Experimental results over 7 benchmark data sets show that the proposed model achieves a breakthrough in clustering performance, compared with 12 state-of-the-art methods.
arXiv Detail & Related papers (2020-12-16T13:01:37Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Bi-objective Optimization of Biclustering with Binary Data [0.0]
Clustering consists of partitioning data objects into subsets called clusters according to some similarity criteria.
This paper addresses a quasi-clustering that allows overlapping of clusters, and which we link to biclustering.
Biclustering simultaneously groups the objects and features so that a specific group of objects has a special group of features.
arXiv Detail & Related papers (2020-02-09T21:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.