論文の概要: Deep Photo Cropper and Enhancer
- arxiv url: http://arxiv.org/abs/2008.00634v1
- Date: Mon, 3 Aug 2020 03:50:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 06:57:39.285304
- Title: Deep Photo Cropper and Enhancer
- Title(参考訳): 深層写真クロッパーとエンハンサー
- Authors: Aaron Ott, Amir Mazaheri, Niels D. Lobo, Mubarak Shah
- Abstract要約: 画像に埋め込まれた画像を収穫する新しいタイプの画像強調問題を提案する。
提案手法をディープ・フォト・クリーパーとディープ・イメージ・エンハンサーの2つのディープ・ネットワークに分割した。
フォトクロッパーネットワークでは,埋め込み画像の抽出に空間変換器を用いる。
フォトエンハンサーでは、埋め込み画像中の画素数を増やすために超解像を用いる。
- 参考スコア(独自算出の注目度): 65.11910918427296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a new type of image enhancement problem. Compared to
traditional image enhancement methods, which mostly deal with pixel-wise
modifications of a given photo, our proposed task is to crop an image which is
embedded within a photo and enhance the quality of the cropped image. We split
our proposed approach into two deep networks: deep photo cropper and deep image
enhancer. In the photo cropper network, we employ a spatial transformer to
extract the embedded image. In the photo enhancer, we employ super-resolution
to increase the number of pixels in the embedded image and reduce the effect of
stretching and distortion of pixels. We use cosine distance loss between image
features and ground truth for the cropper and the mean square loss for the
enhancer. Furthermore, we propose a new dataset to train and test the proposed
method. Finally, we analyze the proposed method with respect to qualitative and
quantitative evaluations.
- Abstract(参考訳): 本稿では,新しいタイプの画像強調問題を提案する。
画像の画素ワイドな修正を主眼とする従来の画像強調手法と比較して,画像に埋め込まれた画像を収穫し,画像の品質を高めることが提案課題である。
提案手法をdeep photo cropperとdeep image enhancerの2つの深層ネットワークに分割した。
写真クロッパーネットワークでは,空間変換器を用いて埋め込み画像を抽出する。
画像エンハンサーでは、埋め込み画像の画素数を増加させ、画素の伸縮や歪みの影響を低減させるスーパーレゾリューションを用いる。
画像特徴量と地盤真理とのコサイン距離損失を収穫者に適用し,エンハンサーの平均2乗損失を用いた。
さらに,提案手法を訓練し,テストするためのデータセットを提案する。
最後に,定性評価と定量的評価に関して提案手法を解析する。
関連論文リスト
- Perceptual Image Compression with Cooperative Cross-Modal Side
Information [53.356714177243745]
本稿では,テキスト誘導側情報を用いた新しい深層画像圧縮手法を提案する。
具体的には,CLIPテキストエンコーダとSemantic-Spatial Awareブロックを用いてテキストと画像の特徴を融合する。
論文 参考訳(メタデータ) (2023-11-23T08:31:11Z) - Parallax-Tolerant Unsupervised Deep Image Stitching [57.76737888499145]
本稿では,パララックス耐性の非教師あり深層画像縫合技術であるUDIS++を提案する。
まず,グローバルなホモグラフィから局所的な薄板スプライン運動への画像登録をモデル化するための,頑健で柔軟なワープを提案する。
本研究では, 縫合された画像をシームレスに合成し, シーム駆動合成マスクの教師なし学習を行うことを提案する。
論文 参考訳(メタデータ) (2023-02-16T10:40:55Z) - Improving Pixel-Level Contrastive Learning by Leveraging Exogenous Depth
Information [7.561849435043042]
近年,コントラスト学習(CL)に基づく自己指導型表現学習が注目されている。
本稿では,深度ネットワークを用いたり,利用可能なデータから測定したりすることで得られる深度情報に焦点を当てる。
比較損失におけるこの推定情報を用いることで、結果が改善され、学習された表現がオブジェクトの形状に従うのがよいことを示す。
論文 参考訳(メタデータ) (2022-11-18T11:45:39Z) - Fast Hybrid Image Retargeting [0.0]
本稿では,コンテント・アウェア・トリミングを用いて歪みを定量化し,抑制する手法を提案する。
我々の手法は,実行時間のごく一部で実行しながら,最近の手法より優れています。
論文 参考訳(メタデータ) (2022-03-25T11:46:06Z) - Beyond Joint Demosaicking and Denoising: An Image Processing Pipeline
for a Pixel-bin Image Sensor [0.883717274344425]
Pixel binningは、スマートフォンカメラのハードウェア制限に対処する最も顕著なソリューションの1つだと考えられている。
本稿では,新しい学習手法を導入することで,このような画像センサ上でのJDD(Joint Desaicing and Denoising)の課題に対処する。
提案手法は,視覚可能な画像を生成するための2つの新しい知覚損失を含む多項目的関数によって導かれる。
論文 参考訳(メタデータ) (2021-04-19T15:41:28Z) - Generative and Discriminative Learning for Distorted Image Restoration [22.230017059874445]
Liquifyは、画像の歪みに使用できる画像編集のテクニックである。
本稿では,深層ニューラルネットワークに基づく新しい生成的・識別的学習手法を提案する。
論文 参考訳(メタデータ) (2020-11-11T14:01:29Z) - Deep Image Compositing [93.75358242750752]
ユーザ入力なしで高品質の画像合成を自動生成する手法を提案する。
ラプラシアン・ピラミッド・ブレンディングにインスパイアされ、フォアグラウンドや背景画像からの情報を効果的に融合させるために、密結合型多ストリーム融合ネットワークが提案されている。
実験により,提案手法は高品質な合成物を自動生成し,定性的かつ定量的に既存手法より優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-11-04T06:12:24Z) - High-Resolution Image Inpainting with Iterative Confidence Feedback and
Guided Upsampling [122.06593036862611]
既存の画像塗装法は、実アプリケーションで大きな穴を扱う際に、しばしばアーティファクトを生成する。
本稿では,フィードバック機構を備えた反復インペイント手法を提案する。
実験により,本手法は定量評価と定性評価の両方において既存手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2020-05-24T13:23:45Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z) - Rethinking Data Augmentation for Image Super-resolution: A Comprehensive
Analysis and a New Strategy [21.89072742618842]
超分解能タスクに適用された既存の拡張手法を包括的に分析する。
我々は、低解像度のパッチをカットし、それに対応する高解像度の画像領域にペーストするCutBlurを提案する。
提案手法は, 様々なシナリオにおいて連続的に, 性能を著しく向上させる。
論文 参考訳(メタデータ) (2020-04-01T13:49:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。