Getting to Know One Another: Calibrating Intent, Capabilities and Trust
for Human-Robot Collaboration
- URL: http://arxiv.org/abs/2008.00699v1
- Date: Mon, 3 Aug 2020 08:04:15 GMT
- Title: Getting to Know One Another: Calibrating Intent, Capabilities and Trust
for Human-Robot Collaboration
- Authors: Joshua Lee, Jeffrey Fong, Bing Cai Kok, Harold Soh
- Abstract summary: We focus on scenarios where the robot is attempting to assist a human who is unable to directly communicate her intent.
We adopt a decision-theoretic approach and propose the TICC-POMDP for modeling this setting.
Experiments show our approach leads to better team performance both in simulation and in a real-world study with human subjects.
- Score: 13.895990928770459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Common experience suggests that agents who know each other well are better
able to work together. In this work, we address the problem of calibrating
intention and capabilities in human-robot collaboration. In particular, we
focus on scenarios where the robot is attempting to assist a human who is
unable to directly communicate her intent. Moreover, both agents may have
differing capabilities that are unknown to one another. We adopt a
decision-theoretic approach and propose the TICC-POMDP for modeling this
setting, with an associated online solver. Experiments show our approach leads
to better team performance both in simulation and in a real-world study with
human subjects.
Related papers
- Learning to Assist Humans without Inferring Rewards [65.28156318196397]
We build upon prior work that studies assistance through the lens of empowerment.
An assistive agent aims to maximize the influence of the human's actions.
We prove that these representations estimate a similar notion of empowerment to that studied by prior work.
arXiv Detail & Related papers (2024-11-04T21:31:04Z) - Mixed-Initiative Human-Robot Teaming under Suboptimality with Online Bayesian Adaptation [0.6591036379613505]
We develop computational modeling and optimization techniques for enhancing the performance of suboptimal human-agent teams.
We adopt an online Bayesian approach that enables a robot to infer people's willingness to comply with its assistance in a sequential decision-making game.
Our user studies show that user preferences and team performance indeed vary with robot intervention styles.
arXiv Detail & Related papers (2024-03-24T14:38:18Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
Addressee Estimation is a skill essential for social robots to interact smoothly with humans.
Inspired by human perceptual skills, a deep-learning model for Addressee Estimation is designed, trained, and deployed on an iCub robot.
The study presents the procedure of such implementation and the performance of the model deployed in real-time human-robot interaction.
arXiv Detail & Related papers (2023-11-09T13:01:21Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0 is a simulation platform for studying collaborative human-robot tasks in home environments.
It addresses challenges in modeling complex deformable bodies and diversity in appearance and motion.
Human-in-the-loop infrastructure enables real human interaction with simulated robots via mouse/keyboard or a VR interface.
arXiv Detail & Related papers (2023-10-19T17:29:17Z) - PECAN: Leveraging Policy Ensemble for Context-Aware Zero-Shot Human-AI
Coordination [52.991211077362586]
We propose a policy ensemble method to increase the diversity of partners in the population.
We then develop a context-aware method enabling the ego agent to analyze and identify the partner's potential policy primitives.
In this way, the ego agent is able to learn more universal cooperative behaviors for collaborating with diverse partners.
arXiv Detail & Related papers (2023-01-16T12:14:58Z) - Robust Planning for Human-Robot Joint Tasks with Explicit Reasoning on
Human Mental State [2.8246074016493457]
We consider the human-aware task planning problem where a human-robot team is given a shared task with a known objective to achieve.
Recent approaches tackle it by modeling it as a team of independent, rational agents, where the robot plans for both agents' (shared) tasks.
We describe a novel approach to solve such problems, which models and uses execution-time observability conventions.
arXiv Detail & Related papers (2022-10-17T09:21:00Z) - Intuitive and Efficient Human-robot Collaboration via Real-time
Approximate Bayesian Inference [4.310882094628194]
Collaborative robots and end-to-end AI, promises flexible automation of human tasks in factories and warehouses.
Humans and cobots will collaborate helping each other.
For these collaborations to be effective and safe, robots need to model, predict and exploit human's intents.
arXiv Detail & Related papers (2022-05-17T23:04:44Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - Human-Robot Team Coordination with Dynamic and Latent Human Task
Proficiencies: Scheduling with Learning Curves [0.0]
We introduce a novel resource coordination that enables robots to explore the relative strengths and learning abilities of their human teammates.
We generate and evaluate a robust schedule while discovering the latest individual worker proficiency.
Results indicate that scheduling strategies favoring exploration tend to be beneficial for human-robot collaboration.
arXiv Detail & Related papers (2020-07-03T19:44:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.