Intuitive and Efficient Human-robot Collaboration via Real-time
Approximate Bayesian Inference
- URL: http://arxiv.org/abs/2205.08657v1
- Date: Tue, 17 May 2022 23:04:44 GMT
- Title: Intuitive and Efficient Human-robot Collaboration via Real-time
Approximate Bayesian Inference
- Authors: Javier Felip Leon and David Gonzalez-Aguirre and Lama Nachman
- Abstract summary: Collaborative robots and end-to-end AI, promises flexible automation of human tasks in factories and warehouses.
Humans and cobots will collaborate helping each other.
For these collaborations to be effective and safe, robots need to model, predict and exploit human's intents.
- Score: 4.310882094628194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The combination of collaborative robots and end-to-end AI, promises flexible
automation of human tasks in factories and warehouses. However, such promise
seems a few breakthroughs away. In the meantime, humans and cobots will
collaborate helping each other. For these collaborations to be effective and
safe, robots need to model, predict and exploit human's intents for responsive
decision making processes.
Approximate Bayesian Computation (ABC) is an analysis-by-synthesis approach
to perform probabilistic predictions upon uncertain quantities. ABC includes
priors conveniently, leverages sampling algorithms for inference and is
flexible to benefit from complex models, e.g. via simulators. However, ABC is
known to be computationally too intensive to run at interactive frame rates
required for effective human-robot collaboration tasks.
In this paper, we formulate human reaching intent prediction as an ABC
problem and describe two key performance innovations which allow computations
at interactive rates. Our real-world experiments with a collaborative robot
set-up, demonstrate the viability of our proposed approach. Experimental
evaluations convey the advantages and value of human intent prediction for
packing cooperative tasks. Qualitative results show how anticipating human's
reaching intent improves human-robot collaboration without compromising safety.
Quantitative task fluency metrics confirm the qualitative claims.
Related papers
- Extended Reality for Enhanced Human-Robot Collaboration: a Human-in-the-Loop Approach [2.336967926255341]
Human-robot collaboration attempts to tackle these challenges by combining the strength and precision of machines with human ingenuity and perceptual understanding.
We propose an implementation framework for an autonomous, machine learning-based manipulator that incorporates human-in-the-loop principles.
The conceptual framework foresees human involvement directly in the robot learning process, resulting in higher adaptability and task generalization.
arXiv Detail & Related papers (2024-03-21T17:50:22Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0 is a simulation platform for studying collaborative human-robot tasks in home environments.
It addresses challenges in modeling complex deformable bodies and diversity in appearance and motion.
Human-in-the-loop infrastructure enables real human interaction with simulated robots via mouse/keyboard or a VR interface.
arXiv Detail & Related papers (2023-10-19T17:29:17Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
Planning motions that take human comfort into account is not a part of the human-robot handover process.
We propose to generate smooth motions via an efficient model-predictive control framework.
We conduct human-to-robot handover experiments on a diverse set of objects with several users.
arXiv Detail & Related papers (2022-03-31T23:08:20Z) - Human-Algorithm Collaboration: Achieving Complementarity and Avoiding
Unfairness [92.26039686430204]
We show that even in carefully-designed systems, complementary performance can be elusive.
First, we provide a theoretical framework for modeling simple human-algorithm systems.
Next, we use this model to prove conditions where complementarity is impossible.
arXiv Detail & Related papers (2022-02-17T18:44:41Z) - Probabilistic Human Motion Prediction via A Bayesian Neural Network [71.16277790708529]
We propose a probabilistic model for human motion prediction in this paper.
Our model could generate several future motions when given an observed motion sequence.
We extensively validate our approach on a large scale benchmark dataset Human3.6m.
arXiv Detail & Related papers (2021-07-14T09:05:33Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - Deployment and Evaluation of a Flexible Human-Robot Collaboration Model
Based on AND/OR Graphs in a Manufacturing Environment [2.3848738964230023]
A major bottleneck to effectively deploy collaborative robots to manufacturing industries is developing task planning algorithms.
A pick-and-place palletization task, which requires the collaboration between humans and robots, is investigated.
The results of this study demonstrate how human-robot collaboration models like the one we propose can leverage the flexibility and the comfort of operators in the workplace.
arXiv Detail & Related papers (2020-07-13T22:05:34Z) - Human-Robot Team Coordination with Dynamic and Latent Human Task
Proficiencies: Scheduling with Learning Curves [0.0]
We introduce a novel resource coordination that enables robots to explore the relative strengths and learning abilities of their human teammates.
We generate and evaluate a robust schedule while discovering the latest individual worker proficiency.
Results indicate that scheduling strategies favoring exploration tend to be beneficial for human-robot collaboration.
arXiv Detail & Related papers (2020-07-03T19:44:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.