One Model, Many Languages: Meta-learning for Multilingual Text-to-Speech
- URL: http://arxiv.org/abs/2008.00768v1
- Date: Mon, 3 Aug 2020 10:43:30 GMT
- Title: One Model, Many Languages: Meta-learning for Multilingual Text-to-Speech
- Authors: Tom\'a\v{s} Nekvinda and Ond\v{r}ej Du\v{s}ek
- Abstract summary: We introduce an approach to multilingual speech synthesis which uses the meta-learning concept of contextual parameter generation.
Our model is shown to effectively share information across languages and according to a subjective evaluation test, it produces more natural and accurate code-switching speech than the baselines.
- Score: 3.42658286826597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an approach to multilingual speech synthesis which uses the
meta-learning concept of contextual parameter generation and produces
natural-sounding multilingual speech using more languages and less training
data than previous approaches. Our model is based on Tacotron 2 with a fully
convolutional input text encoder whose weights are predicted by a separate
parameter generator network. To boost voice cloning, the model uses an
adversarial speaker classifier with a gradient reversal layer that removes
speaker-specific information from the encoder.
We arranged two experiments to compare our model with baselines using various
levels of cross-lingual parameter sharing, in order to evaluate: (1) stability
and performance when training on low amounts of data, (2) pronunciation
accuracy and voice quality of code-switching synthesis. For training, we used
the CSS10 dataset and our new small dataset based on Common Voice recordings in
five languages. Our model is shown to effectively share information across
languages and according to a subjective evaluation test, it produces more
natural and accurate code-switching speech than the baselines.
Related papers
- Multi-modal Adversarial Training for Zero-Shot Voice Cloning [9.823246184635103]
We propose a Transformer encoder-decoder architecture to conditionally discriminate between real and generated speech features.
We introduce our novel adversarial training technique by applying it to a FastSpeech2 acoustic model and training on Libriheavy, a large multi-speaker dataset.
Our model achieves improvements over the baseline in terms of speech quality and speaker similarity.
arXiv Detail & Related papers (2024-08-28T16:30:41Z) - MulliVC: Multi-lingual Voice Conversion With Cycle Consistency [75.59590240034261]
MulliVC is a novel voice conversion system that only converts timbre and keeps original content and source language prosody without multi-lingual paired data.
Both objective and subjective results indicate that MulliVC significantly surpasses other methods in both monolingual and cross-lingual contexts.
arXiv Detail & Related papers (2024-08-08T18:12:51Z) - Multilingual self-supervised speech representations improve the speech
recognition of low-resource African languages with codeswitching [65.74653592668743]
Finetuning self-supervised multilingual representations reduces absolute word error rates by up to 20%.
In circumstances with limited training data finetuning self-supervised representations is a better performing and viable solution.
arXiv Detail & Related papers (2023-11-25T17:05:21Z) - Cross-lingual Knowledge Distillation via Flow-based Voice Conversion for
Robust Polyglot Text-To-Speech [6.243356997302935]
We introduce a framework for cross-lingual speech synthesis, which involves an upstream Voice Conversion (VC) model and a downstream Text-To-Speech (TTS) model.
In the first two stages, we use a VC model to convert utterances in the target locale to the voice of the target speaker.
In the third stage, the converted data is combined with the linguistic features and durations from recordings in the target language, which are then used to train a single-speaker acoustic model.
arXiv Detail & Related papers (2023-09-15T09:03:14Z) - Textless Unit-to-Unit training for Many-to-Many Multilingual Speech-to-Speech Translation [65.13824257448564]
This paper proposes a textless training method for many-to-many multilingual speech-to-speech translation.
By treating the speech units as pseudo-text, we can focus on the linguistic content of the speech.
We demonstrate that the proposed UTUT model can be effectively utilized not only for Speech-to-Speech Translation (S2ST) but also for multilingual Text-to-Speech Synthesis (T2S) and Text-to-Speech Translation (T2ST)
arXiv Detail & Related papers (2023-08-03T15:47:04Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
Cross-lingual self-supervised visual representation learning has been a growing research topic in the last few years.
We use the recently-proposed Raw Audio-Visual Speechs (RAVEn) framework to pre-train an audio-visual model with unlabelled data.
Our experiments show that: (1) multi-lingual models with more data outperform monolingual ones, but, when keeping the amount of data fixed, monolingual models tend to reach better performance.
arXiv Detail & Related papers (2023-03-14T17:05:08Z) - Scaling Up Deliberation for Multilingual ASR [36.860327600638705]
We investigate second-pass deliberation for multilingual speech recognition.
Our proposed deliberation is multilingual, i.e., the text encoder encodes hypothesis text from multiple languages, and the decoder attends to multilingual text and audio.
We show that deliberation improves the average WER on 9 languages by 4% relative compared to the single-pass model.
arXiv Detail & Related papers (2022-10-11T21:07:00Z) - Textless Speech-to-Speech Translation on Real Data [49.134208897722246]
We present a textless speech-to-speech translation (S2ST) system that can translate speech from one language into another language.
We tackle the challenge in modeling multi-speaker target speech and train the systems with real-world S2ST data.
arXiv Detail & Related papers (2021-12-15T18:56:35Z) - Cross-lingual Low Resource Speaker Adaptation Using Phonological
Features [2.8080708404213373]
We train a language-agnostic multispeaker model conditioned on a set of phonologically derived features common across different languages.
With as few as 32 and 8 utterances of target speaker data, we obtain high speaker similarity scores and naturalness comparable to the corresponding literature.
arXiv Detail & Related papers (2021-11-17T12:33:42Z) - Exploring Teacher-Student Learning Approach for Multi-lingual
Speech-to-Intent Classification [73.5497360800395]
We develop an end-to-end system that supports multiple languages.
We exploit knowledge from a pre-trained multi-lingual natural language processing model.
arXiv Detail & Related papers (2021-09-28T04:43:11Z) - Cross-lingual Multispeaker Text-to-Speech under Limited-Data Scenario [10.779568857641928]
This paper presents an extension on Tacotron2 to achieve bilingual multispeaker speech synthesis.
We achieve cross-lingual synthesis, including code-switching cases, between English and Mandarin for monolingual speakers.
arXiv Detail & Related papers (2020-05-21T03:03:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.