Multi-modal Adversarial Training for Zero-Shot Voice Cloning
- URL: http://arxiv.org/abs/2408.15916v1
- Date: Wed, 28 Aug 2024 16:30:41 GMT
- Title: Multi-modal Adversarial Training for Zero-Shot Voice Cloning
- Authors: John Janiczek, Dading Chong, Dongyang Dai, Arlo Faria, Chao Wang, Tao Wang, Yuzong Liu,
- Abstract summary: We propose a Transformer encoder-decoder architecture to conditionally discriminate between real and generated speech features.
We introduce our novel adversarial training technique by applying it to a FastSpeech2 acoustic model and training on Libriheavy, a large multi-speaker dataset.
Our model achieves improvements over the baseline in terms of speech quality and speaker similarity.
- Score: 9.823246184635103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A text-to-speech (TTS) model trained to reconstruct speech given text tends towards predictions that are close to the average characteristics of a dataset, failing to model the variations that make human speech sound natural. This problem is magnified for zero-shot voice cloning, a task that requires training data with high variance in speaking styles. We build off of recent works which have used Generative Advsarial Networks (GAN) by proposing a Transformer encoder-decoder architecture to conditionally discriminates between real and generated speech features. The discriminator is used in a training pipeline that improves both the acoustic and prosodic features of a TTS model. We introduce our novel adversarial training technique by applying it to a FastSpeech2 acoustic model and training on Libriheavy, a large multi-speaker dataset, for the task of zero-shot voice cloning. Our model achieves improvements over the baseline in terms of speech quality and speaker similarity. Audio examples from our system are available online.
Related papers
- Pheme: Efficient and Conversational Speech Generation [52.34331755341856]
We introduce the Pheme model series that offers compact yet high-performing conversational TTS models.
It can be trained efficiently on smaller-scale conversational data, cutting data demands by more than 10x but still matching the quality of the autoregressive TTS models.
arXiv Detail & Related papers (2024-01-05T14:47:20Z) - SelfVC: Voice Conversion With Iterative Refinement using Self Transformations [42.97689861071184]
SelfVC is a training strategy to improve a voice conversion model with self-synthesized examples.
We develop techniques to derive prosodic information from the audio signal and SSL representations to train predictive submodules in the synthesis model.
Our framework is trained without any text and achieves state-of-the-art results in zero-shot voice conversion on metrics evaluating naturalness, speaker similarity, and intelligibility of synthesized audio.
arXiv Detail & Related papers (2023-10-14T19:51:17Z) - SpeechX: Neural Codec Language Model as a Versatile Speech Transformer [57.82364057872905]
SpeechX is a versatile speech generation model capable of zero-shot TTS and various speech transformation tasks.
Experimental results show SpeechX's efficacy in various tasks, including zero-shot TTS, noise suppression, target speaker extraction, speech removal, and speech editing with or without background noise.
arXiv Detail & Related papers (2023-08-14T01:01:19Z) - NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot
Speech and Singing Synthesizers [90.83782600932567]
We develop NaturalSpeech 2, a TTS system that leverages a neural audio predictor with residual vectorizers to get the quantized latent vectors.
We scale NaturalSpeech 2 to large-scale datasets with 44K hours of speech and singing data and evaluate its voice quality on unseen speakers.
NaturalSpeech 2 outperforms previous TTS systems by a large margin in terms of prosody/timbre similarity, synthesis, and voice quality in a zero-shot setting.
arXiv Detail & Related papers (2023-04-18T16:31:59Z) - ERNIE-SAT: Speech and Text Joint Pretraining for Cross-Lingual
Multi-Speaker Text-to-Speech [58.93395189153713]
We extend the pretraining method for cross-lingual multi-speaker speech synthesis tasks.
We propose a speech-text joint pretraining framework, where we randomly mask the spectrogram and the phonemes.
Our model shows great improvements over speaker-embedding-based multi-speaker TTS methods.
arXiv Detail & Related papers (2022-11-07T13:35:16Z) - SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder
Based Speech-Text Pre-training [106.34112664893622]
We propose a unified-modal speech-unit-text pre-training model, SpeechUT, to connect the representations of a speech encoder and a text decoder with a shared unit encoder.
Our proposed SpeechUT is fine-tuned and evaluated on automatic speech recognition (ASR) and speech translation (ST) tasks.
arXiv Detail & Related papers (2022-10-07T17:57:45Z) - Training Robust Zero-Shot Voice Conversion Models with Self-supervised
Features [24.182732872327183]
Unsampling Zero-Shot Voice Conversion (VC) aims to modify the speaker characteristic of an utterance to match an unseen target speaker.
We show that high-quality audio samples can be achieved by using a length resupervised decoder.
arXiv Detail & Related papers (2021-12-08T17:27:39Z) - GANSpeech: Adversarial Training for High-Fidelity Multi-Speaker Speech
Synthesis [6.632254395574993]
GANSpeech is a high-fidelity multi-speaker TTS model that adopts the adversarial training method to a non-autoregressive multi-speaker TTS model.
In the subjective listening tests, GANSpeech significantly outperformed the baseline multi-speaker FastSpeech and FastSpeech2 models.
arXiv Detail & Related papers (2021-06-29T08:15:30Z) - AdaSpeech: Adaptive Text to Speech for Custom Voice [104.69219752194863]
We propose AdaSpeech, an adaptive TTS system for high-quality and efficient customization of new voices.
Experiment results show that AdaSpeech achieves much better adaptation quality than baseline methods, with only about 5K specific parameters for each speaker.
arXiv Detail & Related papers (2021-03-01T13:28:59Z) - Voice Cloning: a Multi-Speaker Text-to-Speech Synthesis Approach based
on Transfer Learning [0.802904964931021]
The proposed approach has the goal to overcome these limitations trying to obtain a system which is able to model a multi-speaker acoustic space.
This allows the generation of speech audio similar to the voice of different target speakers, even if they were not observed during the training phase.
arXiv Detail & Related papers (2021-02-10T18:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.