State-of-the-art Techniques in Deep Edge Intelligence
- URL: http://arxiv.org/abs/2008.00824v3
- Date: Thu, 24 Dec 2020 07:42:01 GMT
- Title: State-of-the-art Techniques in Deep Edge Intelligence
- Authors: Ahnaf Hannan Lodhi, Bar{\i}\c{s} Akg\"un, \"Oznur \"Ozkasap
- Abstract summary: Edge Intelligence (EI) has quickly emerged as a powerful alternative to enable learning using the concepts of Edge Computing.
In this article, we provide an overview of the major constraints in operationalizing DEI.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The potential held by the gargantuan volumes of data being generated across
networks worldwide has been truly unlocked by machine learning techniques and
more recently Deep Learning. The advantages offered by the latter have seen it
rapidly becoming a framework of choice for various applications. However, the
centralization of computational resources and the need for data aggregation
have long been limiting factors in the democratization of Deep Learning
applications. Edge Computing is an emerging paradigm that aims to utilize the
hitherto untapped processing resources available at the network periphery. Edge
Intelligence (EI) has quickly emerged as a powerful alternative to enable
learning using the concepts of Edge Computing. Deep Learning-based Edge
Intelligence or Deep Edge Intelligence (DEI) lies in this rapidly evolving
domain. In this article, we provide an overview of the major constraints in
operationalizing DEI. The major research avenues in DEI have been consolidated
under Federated Learning, Distributed Computation, Compression Schemes and
Conditional Computation. We also present some of the prevalent challenges and
highlight prospective research avenues.
Related papers
- Uncertainty Estimation in Multi-Agent Distributed Learning for AI-Enabled Edge Devices [0.0]
Edge IoT devices have seen a paradigm shift with the introduction of FPGAs and AI accelerators.
This advancement has vastly amplified their computational capabilities, emphasizing the practicality of edge AI.
Our study explores methods that enable distributed data processing through AI-enabled edge devices, enhancing collaborative learning capabilities.
arXiv Detail & Related papers (2024-03-14T07:40:32Z) - Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement
Learning Approach [58.911515417156174]
We propose a new definition of Age of Information (AoI) and, based on the redefined AoI, we formulate an online AoI problem for MEC systems.
We introduce Post-Decision States (PDSs) to exploit the partial knowledge of the system's dynamics.
We also combine PDSs with deep RL to further improve the algorithm's applicability, scalability, and robustness.
arXiv Detail & Related papers (2023-12-01T01:30:49Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
We conduct a systematic review for both cloud and edge AI.
We are the first to set up the collaborative learning mechanism for cloud and edge modeling.
We discuss potentials and practical experiences of some on-going advanced edge AI topics.
arXiv Detail & Related papers (2021-11-11T05:58:23Z) - Bringing AI To Edge: From Deep Learning's Perspective [7.308396023489246]
Edge computing and artificial intelligence (AI) are gradually intersecting to build a novel system, called edge intelligence.
One of these challenges is the textitcomputational gap between computation-intensive deep learning algorithms and less-capable edge systems.
This paper surveys the representative and latest deep learning techniques that are useful for edge intelligence systems.
arXiv Detail & Related papers (2020-11-25T12:07:21Z) - A Survey of Deep Meta-Learning [1.2891210250935143]
Deep neural networks can achieve great successes when presented with large data sets and sufficient computational resources.
However, their ability to learn new concepts quickly is limited.
Deep Meta-Learning is one approach to address this issue, by enabling the network to learn how to learn.
arXiv Detail & Related papers (2020-10-07T17:09:02Z) - Incentive Mechanism Design for Resource Sharing in Collaborative Edge
Learning [106.51930957941433]
In 5G and Beyond networks, Artificial Intelligence applications are expected to be increasingly ubiquitous.
This necessitates a paradigm shift from the current cloud-centric model training approach to the Edge Computing based collaborative learning scheme known as edge learning.
arXiv Detail & Related papers (2020-05-31T12:45:06Z) - Offline Reinforcement Learning: Tutorial, Review, and Perspectives on
Open Problems [108.81683598693539]
offline reinforcement learning algorithms hold tremendous promise for making it possible to turn large datasets into powerful decision making engines.
We will aim to provide the reader with an understanding of these challenges, particularly in the context of modern deep reinforcement learning methods.
arXiv Detail & Related papers (2020-05-04T17:00:15Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Communication-Efficient Edge AI: Algorithms and Systems [39.28788394839187]
Wide scale deployment of edge devices (e.g., IoT devices) generates an unprecedented scale of data.
Such enormous data cannot all be sent from end devices to the cloud for processing.
By pushing inference and training processes of AI models to edge nodes, edge AI has emerged as a promising alternative.
arXiv Detail & Related papers (2020-02-22T09:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.