Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement
Learning Approach
- URL: http://arxiv.org/abs/2312.00279v2
- Date: Fri, 23 Feb 2024 01:55:34 GMT
- Title: Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement
Learning Approach
- Authors: Xingqiu He, Chaoqun You, Tony Q. S. Quek
- Abstract summary: We propose a new definition of Age of Information (AoI) and, based on the redefined AoI, we formulate an online AoI problem for MEC systems.
We introduce Post-Decision States (PDSs) to exploit the partial knowledge of the system's dynamics.
We also combine PDSs with deep RL to further improve the algorithm's applicability, scalability, and robustness.
- Score: 58.911515417156174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of Mobile Edge Computing (MEC), various real-time
applications have been deployed to benefit people's daily lives. The
performance of these applications relies heavily on the freshness of collected
environmental information, which can be quantified by its Age of Information
(AoI). In the traditional definition of AoI, it is assumed that the status
information can be actively sampled and directly used. However, for many
MEC-enabled applications, the desired status information is updated in an
event-driven manner and necessitates data processing. To better serve these
applications, we propose a new definition of AoI and, based on the redefined
AoI, we formulate an online AoI minimization problem for MEC systems. Notably,
the problem can be interpreted as a Markov Decision Process (MDP), thus
enabling its solution through Reinforcement Learning (RL) algorithms.
Nevertheless, the traditional RL algorithms are designed for MDPs with
completely unknown system dynamics and hence usually suffer long convergence
times. To accelerate the learning process, we introduce Post-Decision States
(PDSs) to exploit the partial knowledge of the system's dynamics. We also
combine PDSs with deep RL to further improve the algorithm's applicability,
scalability, and robustness. Numerical results demonstrate that our algorithm
outperforms the benchmarks under various scenarios.
Related papers
- Burning RED: Unlocking Subtask-Driven Reinforcement Learning and Risk-Awareness in Average-Reward Markov Decision Processes [7.028778922533688]
Average-reward Markov decision processes (MDPs) provide a foundational framework for sequential decision-making under uncertainty.
We study a unique structural property of average-reward MDPs and utilize it to introduce Reward-Extended Differential (or RED) reinforcement learning.
arXiv Detail & Related papers (2024-10-14T14:52:23Z) - Asynchronous Fractional Multi-Agent Deep Reinforcement Learning for Age-Minimal Mobile Edge Computing [14.260646140460187]
We study the timeliness of computational-intensive updates and explore jointly optimize the task updating and offloading policies to minimize AoI.
Specifically, we consider edge load dynamics and formulate a task scheduling problem to minimize the expected time-average AoI.
Our proposed algorithms reduce the average AoI by up to 52.6% compared with the best baseline algorithm in our experiments.
arXiv Detail & Related papers (2024-09-25T11:33:32Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Fractional Deep Reinforcement Learning for Age-Minimal Mobile Edge
Computing [11.403989519949173]
This work focuses on the timeliness of computational-intensive updates, measured by Age-ofInformation (AoI)
We study how to jointly optimize the task updating and offloading policies for AoI with fractional form.
Experimental results show that our proposed algorithms reduce the average AoI by up to 57.6% compared with several non-fractional benchmarks.
arXiv Detail & Related papers (2023-12-16T11:13:40Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Minimizing Age of Information for Mobile Edge Computing Systems: A
Nested Index Approach [11.998034941401814]
Mobile edge computation (MEC) provides an efficient approach to achieving real-time applications that are sensitive to information freshness.
In this paper, we consider multiple users offloading tasks to heterogeneous edge servers in a MEC system.
Our algorithm leads to an optimality gap reduction of up to 40%, compared to benchmarks.
arXiv Detail & Related papers (2023-07-03T21:47:21Z) - Age of Semantics in Cooperative Communications: To Expedite Simulation
Towards Real via Offline Reinforcement Learning [53.18060442931179]
We propose the age of semantics (AoS) for measuring semantics freshness of status updates in a cooperative relay communication system.
We derive an online deep actor-critic (DAC) learning scheme under the on-policy temporal difference learning framework.
We then put forward a novel offline DAC scheme, which estimates the optimal control policy from a previously collected dataset.
arXiv Detail & Related papers (2022-09-19T11:55:28Z) - Optimizing the Long-Term Average Reward for Continuing MDPs: A Technical
Report [117.23323653198297]
We have struck the balance between the information freshness, experienced by users and energy consumed by sensors.
We cast the corresponding status update procedure as a continuing Markov Decision Process (MDP)
To circumvent the curse of dimensionality, we have established a methodology for designing deep reinforcement learning (DRL) algorithms.
arXiv Detail & Related papers (2021-04-13T12:29:55Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Online Service Migration in Edge Computing with Incomplete Information:
A Deep Recurrent Actor-Critic Method [18.891775769665102]
Multi-access Edge Computing (MEC) is an emerging computing paradigm that extends cloud computing to the network edge.
Service migration needs to decide where to migrate user services for maintaining high Quality-of-Service (QoS)
We propose a new learning-driven method, namely Deep Recurrent ActorCritic based service Migration (DRACM), which is usercentric and can make effective online migration decisions.
arXiv Detail & Related papers (2020-12-16T00:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.