Class-Incremental Domain Adaptation
- URL: http://arxiv.org/abs/2008.01389v1
- Date: Tue, 4 Aug 2020 07:55:03 GMT
- Title: Class-Incremental Domain Adaptation
- Authors: Jogendra Nath Kundu, Rahul Mysore Venkatesh, Naveen Venkat, Ambareesh
Revanur, R. Venkatesh Babu
- Abstract summary: We introduce a practical Domain Adaptation (DA) paradigm called Class-Incremental Domain Adaptation (CIDA)
Existing DA methods tackle domain-shift but are unsuitable for learning novel target-domain classes.
Our approach yields superior performance as compared to both DA and CI methods in the CIDA paradigm.
- Score: 56.72064953133832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a practical Domain Adaptation (DA) paradigm called
Class-Incremental Domain Adaptation (CIDA). Existing DA methods tackle
domain-shift but are unsuitable for learning novel target-domain classes.
Meanwhile, class-incremental (CI) methods enable learning of new classes in
absence of source training data but fail under a domain-shift without labeled
supervision. In this work, we effectively identify the limitations of these
approaches in the CIDA paradigm. Motivated by theoretical and empirical
observations, we propose an effective method, inspired by prototypical
networks, that enables classification of target samples into both shared and
novel (one-shot) target classes, even under a domain-shift. Our approach yields
superior performance as compared to both DA and CI methods in the CIDA
paradigm.
Related papers
- Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
Traditional domain adaptation methods presume that the classes in the source and target domains are identical.
Open-set domain adaptation (OSDA) addresses this limitation by allowing previously unseen classes in the target domain.
We propose a novel framework based on self-paced learning to distinguish common and unknown class samples.
arXiv Detail & Related papers (2023-03-10T14:11:09Z) - MemSAC: Memory Augmented Sample Consistency for Large Scale Unsupervised
Domain Adaptation [71.4942277262067]
We propose MemSAC, which exploits sample level similarity across source and target domains to achieve discriminative transfer.
We provide in-depth analysis and insights into the effectiveness of MemSAC.
arXiv Detail & Related papers (2022-07-25T17:55:28Z) - Domain Adaptation via Prompt Learning [39.97105851723885]
Unsupervised domain adaption (UDA) aims to adapt models learned from a well-annotated source domain to a target domain.
We introduce a novel prompt learning paradigm for UDA, named Domain Adaptation via Prompt Learning (DAPL)
arXiv Detail & Related papers (2022-02-14T13:25:46Z) - Revisiting Deep Subspace Alignment for Unsupervised Domain Adaptation [42.16718847243166]
Unsupervised domain adaptation (UDA) aims to transfer and adapt knowledge from a labeled source domain to an unlabeled target domain.
Traditionally, subspace-based methods form an important class of solutions to this problem.
This paper revisits the use of subspace alignment for UDA and proposes a novel adaptation algorithm that consistently leads to improved generalization.
arXiv Detail & Related papers (2022-01-05T20:16:38Z) - A New Bidirectional Unsupervised Domain Adaptation Segmentation
Framework [27.13101555533594]
unsupervised domain adaptation (UDA) techniques are proposed to bridge the gap between different domains.
In this paper, we propose a bidirectional UDA framework based on disentangled representation learning for equally competent two-way UDA performances.
arXiv Detail & Related papers (2021-08-18T05:25:11Z) - Source-Free Open Compound Domain Adaptation in Semantic Segmentation [99.82890571842603]
In SF-OCDA, only the source pre-trained model and the target data are available to learn the target model.
We propose the Cross-Patch Style Swap (CPSS) to diversify samples with various patch styles in the feature-level.
Our method produces state-of-the-art results on the C-Driving dataset.
arXiv Detail & Related papers (2021-06-07T08:38:41Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Dual Mixup Regularized Learning for Adversarial Domain Adaptation [19.393393465837377]
We propose a dual mixup regularized learning (DMRL) method for unsupervised domain adaptation.
DMRL guides the classifier in enhancing consistent predictions in-between samples, and enriches the intrinsic structures of the latent space.
A series of empirical studies on four domain adaptation benchmarks demonstrate that our approach can achieve the state-of-the-art.
arXiv Detail & Related papers (2020-07-07T00:24:14Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.