Domain Adaptation via Prompt Learning
- URL: http://arxiv.org/abs/2202.06687v1
- Date: Mon, 14 Feb 2022 13:25:46 GMT
- Title: Domain Adaptation via Prompt Learning
- Authors: Chunjiang Ge and Rui Huang and Mixue Xie and Zihang Lai and Shiji Song
and Shuang Li and Gao Huang
- Abstract summary: Unsupervised domain adaption (UDA) aims to adapt models learned from a well-annotated source domain to a target domain.
We introduce a novel prompt learning paradigm for UDA, named Domain Adaptation via Prompt Learning (DAPL)
- Score: 39.97105851723885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaption (UDA) aims to adapt models learned from a
well-annotated source domain to a target domain, where only unlabeled samples
are given. Current UDA approaches learn domain-invariant features by aligning
source and target feature spaces. Such alignments are imposed by constraints
such as statistical discrepancy minimization or adversarial training. However,
these constraints could lead to the distortion of semantic feature structures
and loss of class discriminability. In this paper, we introduce a novel prompt
learning paradigm for UDA, named Domain Adaptation via Prompt Learning (DAPL).
In contrast to prior works, our approach makes use of pre-trained
vision-language models and optimizes only very few parameters. The main idea is
to embed domain information into prompts, a form of representations generated
from natural language, which is then used to perform classification. This
domain information is shared only by images from the same domain, thereby
dynamically adapting the classifier according to each domain. By adopting this
paradigm, we show that our model not only outperforms previous methods on
several cross-domain benchmarks but also is very efficient to train and easy to
implement.
Related papers
- Continual Unsupervised Domain Adaptation for Semantic Segmentation using
a Class-Specific Transfer [9.46677024179954]
segmentation models do not generalize to unseen domains.
We propose a light-weight style transfer framework that incorporates two class-conditional AdaIN layers.
We extensively validate our approach on a synthetic sequence and further propose a challenging sequence consisting of real domains.
arXiv Detail & Related papers (2022-08-12T21:30:49Z) - Prototypical Contrast Adaptation for Domain Adaptive Semantic
Segmentation [52.63046674453461]
Prototypical Contrast Adaptation (ProCA) is a contrastive learning method for unsupervised domain adaptive semantic segmentation.
ProCA incorporates inter-class information into class-wise prototypes, and adopts the class-centered distribution alignment for adaptation.
arXiv Detail & Related papers (2022-07-14T04:54:26Z) - Dynamic Instance Domain Adaptation [109.53575039217094]
Most studies on unsupervised domain adaptation assume that each domain's training samples come with domain labels.
We develop a dynamic neural network with adaptive convolutional kernels to generate instance-adaptive residuals to adapt domain-agnostic deep features to each individual instance.
Our model, dubbed DIDA-Net, achieves state-of-the-art performance on several commonly used single-source and multi-source UDA datasets.
arXiv Detail & Related papers (2022-03-09T20:05:54Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDA attempts to provide efficient knowledge transfer from a labeled source domain to an unlabeled target domain.
We propose a contrastive learning approach that adapts category-wise centroids across domains.
We extend our method with self-training, where we use a memory-efficient temporal ensemble to generate consistent and reliable pseudo-labels.
arXiv Detail & Related papers (2021-05-05T11:55:53Z) - On Universal Black-Box Domain Adaptation [53.7611757926922]
We study an arguably least restrictive setting of domain adaptation in a sense of practical deployment.
Only the interface of source model is available to the target domain, and where the label-space relations between the two domains are allowed to be different and unknown.
We propose to unify them into a self-training framework, regularized by consistency of predictions in local neighborhoods of target samples.
arXiv Detail & Related papers (2021-04-10T02:21:09Z) - Prototypical Cross-domain Self-supervised Learning for Few-shot
Unsupervised Domain Adaptation [91.58443042554903]
We propose an end-to-end Prototypical Cross-domain Self-Supervised Learning (PCS) framework for Few-shot Unsupervised Domain Adaptation (FUDA)
PCS not only performs cross-domain low-level feature alignment, but it also encodes and aligns semantic structures in the shared embedding space across domains.
Compared with state-of-the-art methods, PCS improves the mean classification accuracy over different domain pairs on FUDA by 10.5%, 3.5%, 9.0%, and 13.2% on Office, Office-Home, VisDA-2017, and DomainNet, respectively.
arXiv Detail & Related papers (2021-03-31T02:07:42Z) - Contradistinguisher: A Vapnik's Imperative to Unsupervised Domain
Adaptation [7.538482310185133]
We propose a model referred Contradistinguisher that learns contrastive features and whose objective is to jointly learn to contradistinguish the unlabeled target domain in an unsupervised way.
We achieve the state-of-the-art on Office-31 and VisDA-2017 datasets in both single-source and multi-source settings.
arXiv Detail & Related papers (2020-05-25T19:54:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.