MultiCheXNet: A Multi-Task Learning Deep Network For Pneumonia-like
Diseases Diagnosis From X-ray Scans
- URL: http://arxiv.org/abs/2008.01973v1
- Date: Wed, 5 Aug 2020 07:45:24 GMT
- Title: MultiCheXNet: A Multi-Task Learning Deep Network For Pneumonia-like
Diseases Diagnosis From X-ray Scans
- Authors: Abdullah Tarek Farag, Ahmed Raafat Abd El-Wahab, Mahmoud Nada, Mohamed
Yasser Abd El-Hakeem, Omar Sayed Mahmoud, Reem Khaled Rashwan and Ahmad El
Sallab
- Abstract summary: MultiCheXNet is able to take advantage of different X-rays data sets of Pneumonia-like diseases in one neural architecture.
The common encoder in our architecture can capture useful common features present in the different tasks.
The specialized decoders heads can then capture the task-specific features.
- Score: 1.0621485365427565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present MultiCheXNet, an end-to-end Multi-task learning model, that is
able to take advantage of different X-rays data sets of Pneumonia-like diseases
in one neural architecture, performing three tasks at the same time; diagnosis,
segmentation and localization. The common encoder in our architecture can
capture useful common features present in the different tasks. The common
encoder has another advantage of efficient computations, which speeds up the
inference time compared to separate models. The specialized decoders heads can
then capture the task-specific features. We employ teacher forcing to address
the issue of negative samples that hurt the segmentation and localization
performance. Finally,we employ transfer learning to fine tune the classifier on
unseen pneumonia-like diseases. The MTL architecture can be trained on joint or
dis-joint labeled data sets. The training of the architecture follows a
carefully designed protocol, that pre trains different sub-models on
specialized datasets, before being integrated in the joint MTL model. Our
experimental setup involves variety of data sets, where the baseline
performance of the 3 tasks is compared to the MTL architecture performance.
Moreover, we evaluate the transfer learning mode to COVID-19 data set,both from
individual classifier model, and from MTL architecture classification head.
Related papers
- MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
Foundation models have reshaped the landscape of Remote Sensing (RS) by enhancing various image interpretation tasks.
transferring the pretrained models to downstream tasks may encounter task discrepancy due to their formulation of pretraining as image classification or object discrimination tasks.
We conduct multi-task supervised pretraining on the SAMRS dataset, encompassing semantic segmentation, instance segmentation, and rotated object detection.
Our models are finetuned on various RS downstream tasks, such as scene classification, horizontal and rotated object detection, semantic segmentation, and change detection.
arXiv Detail & Related papers (2024-03-20T09:17:22Z) - MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep
Models for X-ray Images of Multiple Body Parts [63.30352394004674]
Multi-task Self-super-vised Continual Learning (MUSCLE) is a novel self-supervised pre-training pipeline for medical imaging tasks.
MUSCLE aggregates X-rays collected from multiple body parts for representation learning, and adopts a well-designed continual learning procedure.
We evaluate MUSCLE using 9 real-world X-ray datasets with various tasks, including pneumonia classification, skeletal abnormality classification, lung segmentation, and tuberculosis (TB) detection.
arXiv Detail & Related papers (2023-10-03T12:19:19Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Uni3D: A Unified Baseline for Multi-dataset 3D Object Detection [34.2238222373818]
Current 3D object detection models follow a single dataset-specific training and testing paradigm.
In this paper, we study the task of training a unified 3D detector from multiple datasets.
We present a Uni3D which leverages a simple data-level correction operation and a designed semantic-level coupling-and-recoupling module.
arXiv Detail & Related papers (2023-03-13T05:54:13Z) - UNetFormer: A Unified Vision Transformer Model and Pre-Training
Framework for 3D Medical Image Segmentation [14.873473285148853]
We introduce a unified framework consisting of two architectures, dubbed UNetFormer, with a 3D Swin Transformer-based encoder and Conal Neural Network (CNN) and transformer-based decoders.
In the proposed model, the encoder is linked to the decoder via skip connections at five different resolutions with deep supervision.
We present a methodology for self-supervised pre-training of the encoder backbone via learning to predict randomly masked tokens.
arXiv Detail & Related papers (2022-04-01T17:38:39Z) - X-Learner: Learning Cross Sources and Tasks for Universal Visual
Representation [71.51719469058666]
We propose a representation learning framework called X-Learner.
X-Learner learns the universal feature of multiple vision tasks supervised by various sources.
X-Learner achieves strong performance on different tasks without extra annotations, modalities and computational costs.
arXiv Detail & Related papers (2022-03-16T17:23:26Z) - VoxelHop: Successive Subspace Learning for ALS Disease Classification
Using Structural MRI [30.469124322749828]
We present a subspace learning model, termed VoxelHop, for accurate classification of Amyotrophic Lateral Sclerosis (ALS)
Compared with popular convolutional neural network (CNN) architectures, VoxelHop has modular and transparent structures with fewer parameters without any backpropagation.
Our framework can easily be generalized to other classification tasks using different imaging modalities.
arXiv Detail & Related papers (2021-01-13T15:25:57Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Ensemble Deep Learning on Large, Mixed-Site fMRI Datasets in Autism and
Other Tasks [0.1160208922584163]
We train a convolutional neural network (CNN) with the largest multi-source, functional MRI (fMRI) connectomic dataset ever compiled.
Our study finds that deep learning models that distinguish ASD from TD controls focus broadly on temporal and cerebellar connections.
arXiv Detail & Related papers (2020-02-14T17:28:16Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.