Ensemble Deep Learning on Large, Mixed-Site fMRI Datasets in Autism and
Other Tasks
- URL: http://arxiv.org/abs/2002.07874v2
- Date: Wed, 27 May 2020 16:31:37 GMT
- Title: Ensemble Deep Learning on Large, Mixed-Site fMRI Datasets in Autism and
Other Tasks
- Authors: Matthew Leming, Juan Manuel G\'orriz, John Suckling
- Abstract summary: We train a convolutional neural network (CNN) with the largest multi-source, functional MRI (fMRI) connectomic dataset ever compiled.
Our study finds that deep learning models that distinguish ASD from TD controls focus broadly on temporal and cerebellar connections.
- Score: 0.1160208922584163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models for MRI classification face two recurring problems: they
are typically limited by low sample size, and are abstracted by their own
complexity (the "black box problem"). In this paper, we train a convolutional
neural network (CNN) with the largest multi-source, functional MRI (fMRI)
connectomic dataset ever compiled, consisting of 43,858 datapoints. We apply
this model to a cross-sectional comparison of autism (ASD) vs typically
developing (TD) controls that has proved difficult to characterise with
inferential statistics. To contextualise these findings, we additionally
perform classifications of gender and task vs rest. Employing class-balancing
to build a training set, we trained 3$\times$300 modified CNNs in an ensemble
model to classify fMRI connectivity matrices with overall AUROCs of 0.6774,
0.7680, and 0.9222 for ASD vs TD, gender, and task vs rest, respectively.
Additionally, we aim to address the black box problem in this context using two
visualization methods. First, class activation maps show which functional
connections of the brain our models focus on when performing classification.
Second, by analyzing maximal activations of the hidden layers, we were also
able to explore how the model organizes a large and mixed-centre dataset,
finding that it dedicates specific areas of its hidden layers to processing
different covariates of data (depending on the independent variable analyzed),
and other areas to mix data from different sources. Our study finds that deep
learning models that distinguish ASD from TD controls focus broadly on temporal
and cerebellar connections, with a particularly high focus on the right caudate
nucleus and paracentral sulcus.
Related papers
- Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset [11.173478552040441]
Alzheimer's Disease (AD) induces both localised and widespread neural degenerative changes throughout the brain.
In this work, we evaluated several unsupervised methods to train a feature extractor for downstream AD vs. CN classification.
arXiv Detail & Related papers (2024-06-20T11:26:32Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
White matter parcellation classifies tractography streamlines into clusters or anatomically meaningful tracts.
Most parcellation methods focus on the deep white matter (DWM), whereas fewer methods address the superficial white matter (SWM) due to its complexity.
We propose a novel two-stage deep-learning-based framework, Superficial White Matter Analysis (SupWMA), that performs an efficient parcellation of 198 SWM clusters from whole-brain tractography.
arXiv Detail & Related papers (2022-07-18T23:07:53Z) - Learning Multitask Gaussian Bayesian Networks [11.745963019193955]
Major depressive disorder (MDD) requires study of brain functional connectivity alterations for patients.
The amount of data collected during an fMRI scan is too limited to provide sufficient information for individual analysis.
We propose a multitask Gaussian Bayesian network framework capable for identifying individual disease-induced alterations for MDD patients.
arXiv Detail & Related papers (2022-05-11T08:38:00Z) - Identifying Autism Spectrum Disorder Based on Individual-Aware
Down-Sampling and Multi-Modal Learning [4.310840361752551]
We propose a novel feature extraction method for fMRI that can learn a personalized lowe-resolution representation of the entire brain networking.
The present model has achieved a mean classification accuracy of 85.95% and a mean AUC of 0.92, which is better than the state-of-the-art methods.
arXiv Detail & Related papers (2021-09-19T14:22:55Z) - VoxelHop: Successive Subspace Learning for ALS Disease Classification
Using Structural MRI [30.469124322749828]
We present a subspace learning model, termed VoxelHop, for accurate classification of Amyotrophic Lateral Sclerosis (ALS)
Compared with popular convolutional neural network (CNN) architectures, VoxelHop has modular and transparent structures with fewer parameters without any backpropagation.
Our framework can easily be generalized to other classification tasks using different imaging modalities.
arXiv Detail & Related papers (2021-01-13T15:25:57Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.