Unsupervised seismic facies classification using deep convolutional
autoencoder
- URL: http://arxiv.org/abs/2008.01995v1
- Date: Wed, 5 Aug 2020 08:33:09 GMT
- Title: Unsupervised seismic facies classification using deep convolutional
autoencoder
- Authors: Vladimir Puzyrev and Chris Elders
- Abstract summary: Application of automatic methods for seismic facies interpretation could significantly reduce the manual labor and subjectivity of a particular interpreter.
We apply a deep convolutional autoencoder for unsupervised seismic facies classification, which does not require manually labeled examples.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increased size and complexity of seismic surveys, manual labeling of
seismic facies has become a significant challenge. Application of automatic
methods for seismic facies interpretation could significantly reduce the manual
labor and subjectivity of a particular interpreter present in conventional
methods. A recently emerged group of methods is based on deep neural networks.
These approaches are data-driven and require large labeled datasets for network
training. We apply a deep convolutional autoencoder for unsupervised seismic
facies classification, which does not require manually labeled examples. The
facies maps are generated by clustering the deep-feature vectors obtained from
the input data. Our method yields accurate results on real data and provides
them instantaneously. The proposed approach opens up possibilities to analyze
geological patterns in real time without human intervention.
Related papers
- RECOVAR: Representation Covariances on Deep Latent Spaces for Seismic Event Detection [0.0]
We develop an unsupervised method for earthquake detection that learns to detect earthquakes from raw waveforms.
The performance is comparable to, and in some cases better than, some state-of-the-art supervised methods.
The approach has the potential to be useful for time series datasets from other domains.
arXiv Detail & Related papers (2024-07-25T21:33:54Z) - FaultSeg Swin-UNETR: Transformer-Based Self-Supervised Pretraining Model
for Fault Recognition [13.339333273943842]
This paper introduces an approach to enhance seismic fault recognition through self-supervised pretraining.
We have employed the Swin Transformer model as the core network and employed the SimMIM pretraining task to capture unique features related to discontinuities in seismic data.
Experimental results demonstrate that our proposed method attains state-of-the-art performance on the Thebe dataset, as measured by the OIS and ODS metrics.
arXiv Detail & Related papers (2023-10-27T08:38:59Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.
XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.
Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
A novel method combines a time delay neural network and histogram layer to incorporate statistical contexts for improved feature learning and underwater acoustic target classification.
The proposed method outperforms the baseline model, demonstrating the utility in incorporating statistical contexts for passive sonar target recognition.
arXiv Detail & Related papers (2023-07-25T19:47:26Z) - Unsupervised Anomaly Detection via Nonlinear Manifold Learning [0.0]
Anomalies are samples that significantly deviate from the rest of the data and their detection plays a major role in building machine learning models.
We introduce a robust, efficient, and interpretable methodology based on nonlinear manifold learning to detect anomalies in unsupervised settings.
arXiv Detail & Related papers (2023-06-15T18:48:10Z) - Distilling Model Failures as Directions in Latent Space [87.30726685335098]
We present a scalable method for automatically distilling a model's failure modes.
We harness linear classifiers to identify consistent error patterns, and induce a natural representation of these failure modes as directions within the feature space.
We demonstrate that this framework allows us to discover and automatically caption challenging subpopulations within the training dataset, and intervene to improve the model's performance on these subpopulations.
arXiv Detail & Related papers (2022-06-29T16:35:24Z) - Locally Sparse Networks for Interpretable Predictions [7.362415721170984]
We propose a framework for training locally sparse neural networks where the local sparsity is learned via a sample-specific gating mechanism.
The sample-specific sparsity is predicted via a textitgating network, which is trained in tandem with the textitprediction network.
We demonstrate that our method outperforms state-of-the-art models when predicting the target function with far fewer features per instance.
arXiv Detail & Related papers (2021-06-11T15:46:50Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Uncertainty-Aware Deep Classifiers using Generative Models [7.486679152591502]
Deep neural networks are often ignorant about what they do not know and overconfident when they make uninformed predictions.
Some recent approaches quantify uncertainty directly by training the model to output high uncertainty for the data samples close to class boundaries or from the outside of the training distribution.
We develop a novel neural network model that is able to express both aleatoric and epistemic uncertainty to distinguish decision boundary and out-of-distribution regions.
arXiv Detail & Related papers (2020-06-07T15:38:35Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
Subsampling of received wireless signals is important for relaxing hardware requirements as well as the computational cost of signal processing algorithms.
We propose a subsampling technique to facilitate the use of deep learning for automatic modulation classification in wireless communication systems.
arXiv Detail & Related papers (2020-05-10T06:11:13Z) - Seismic horizon detection with neural networks [62.997667081978825]
This paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
The main contribution of this paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
arXiv Detail & Related papers (2020-01-10T11:30:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.