Seismic horizon detection with neural networks
- URL: http://arxiv.org/abs/2001.03390v1
- Date: Fri, 10 Jan 2020 11:30:50 GMT
- Title: Seismic horizon detection with neural networks
- Authors: Alexander Koryagin, Darima Mylzenova, Roman Khudorozhkov, Sergey
Tsimfer
- Abstract summary: This paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
The main contribution of this paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the last few years, Convolutional Neural Networks (CNNs) were
successfully adopted in numerous domains to solve various image-related tasks,
ranging from simple classification to fine borders annotation. Tracking seismic
horizons is no different, and there are a lot of papers proposing the usage of
such models to avoid time-consuming hand-picking. Unfortunately, most of them
are (i) either trained on synthetic data, which can't fully represent the
complexity of subterranean structures, (ii) trained and tested on the same
cube, or (iii) lack reproducibility and precise descriptions of the
model-building process. With all that in mind, the main contribution of this
paper is an open-sourced research of applying binary segmentation approach to
the task of horizon detection on multiple real seismic cubes with a focus on
inter-cube generalization of the predictive model.
Related papers
- CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network [53.72046586512026]
We propose a novel incomplete multi-view clustering network, called Cognitive Deep Incomplete Multi-view Clustering Network (CDIMC-net)
It captures the high-level features and local structure of each view by incorporating the view-specific deep encoders and graph embedding strategy into a framework.
Based on the human cognition, i.e., learning from easy to hard, it introduces a self-paced strategy to select the most confident samples for model training.
arXiv Detail & Related papers (2024-03-28T15:45:03Z) - Fundamental limits of community detection from multi-view data:
multi-layer, dynamic and partially labeled block models [7.778975741303385]
We study community detection in multi-view data in modern network analysis.
We characterize the mutual information between the data and the latent parameters.
We introduce iterative algorithms based on Approximate Message Passing for community detection.
arXiv Detail & Related papers (2024-01-16T07:13:32Z) - Denoise and Contrast for Category Agnostic Shape Completion [48.66519783934386]
We present a deep learning model that exploits the power of self-supervision to perform 3D point cloud completion.
A denoising pretext task provides the network with the needed local cues, decoupled from the high-level semantics.
contrastive learning maximizes the agreement between variants of the same shape with different missing portions.
arXiv Detail & Related papers (2021-03-30T20:33:24Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Quantifying Model Uncertainty in Inverse Problems via Bayesian Deep
Gradient Descent [4.029853654012035]
Recent advances in inverse problems leverage powerful data-driven models, e.g., deep neural networks.
We develop a scalable, data-driven, knowledge-aided computational framework to quantify the model uncertainty via Bayesian neural networks.
arXiv Detail & Related papers (2020-07-20T09:43:31Z) - SeismiQB -- a novel framework for deep learning with seismic data [62.997667081978825]
We've developed an open-sourced Python framework with emphasis on working with neural networks.
It provides convenient tools for fast loading seismic cubes in multiple data formats.
It also generates crops of desired shape and augmenting them with various transformations.
arXiv Detail & Related papers (2020-01-10T10:45:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.