Follow the Object: Curriculum Learning for Manipulation Tasks with
Imagined Goals
- URL: http://arxiv.org/abs/2008.02066v2
- Date: Thu, 11 Nov 2021 07:17:03 GMT
- Title: Follow the Object: Curriculum Learning for Manipulation Tasks with
Imagined Goals
- Authors: Ozsel Kilinc, Giovanni Montana
- Abstract summary: This paper introduces a notion of imaginary object goals.
For a given manipulation task, the object of interest is first trained to reach a desired target position on its own.
The object policy is then leveraged to build a predictive model of plausible object trajectories.
The proposed algorithm, Follow the Object, has been evaluated on 7 MuJoCo environments.
- Score: 8.98526174345299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning robot manipulation through deep reinforcement learning in
environments with sparse rewards is a challenging task. In this paper we
address this problem by introducing a notion of imaginary object goals. For a
given manipulation task, the object of interest is first trained to reach a
desired target position on its own, without being manipulated, through
physically realistic simulations. The object policy is then leveraged to build
a predictive model of plausible object trajectories providing the robot with a
curriculum of incrementally more difficult object goals to reach during
training. The proposed algorithm, Follow the Object (FO), has been evaluated on
7 MuJoCo environments requiring increasing degree of exploration, and has
achieved higher success rates compared to alternative algorithms. In
particularly challenging learning scenarios, e.g. where the object's initial
and target positions are far apart, our approach can still learn a policy
whereas competing methods currently fail.
Related papers
- Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
We learn a sequence of actions that utilize the environment to change the object's pose.
Our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment.
We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace.
arXiv Detail & Related papers (2023-10-26T21:28:23Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
This paper proposes a model-based active exploration approach that enables efficient learning in sparse-reward robotic manipulation tasks.
We evaluate our proposed algorithm in simulation and on a real robot, trained from scratch with our method.
arXiv Detail & Related papers (2022-10-23T18:07:51Z) - Deep Hierarchical Planning from Pixels [86.14687388689204]
Director is a method for learning hierarchical behaviors directly from pixels by planning inside the latent space of a learned world model.
Despite operating in latent space, the decisions are interpretable because the world model can decode goals into images for visualization.
Director also learns successful behaviors across a wide range of environments, including visual control, Atari games, and DMLab levels.
arXiv Detail & Related papers (2022-06-08T18:20:15Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
General-purpose robots require diverse repertoires of behaviors to complete challenging tasks in real-world unstructured environments.
To address this issue, goal-conditioned reinforcement learning aims to acquire policies that can reach goals for a wide range of tasks on command.
We propose Planning to Practice, a method that makes it practical to train goal-conditioned policies for long-horizon tasks.
arXiv Detail & Related papers (2022-05-17T06:58:17Z) - Object Manipulation via Visual Target Localization [64.05939029132394]
Training agents to manipulate objects, poses many challenges.
We propose an approach that explores the environment in search for target objects, computes their 3D coordinates once they are located, and then continues to estimate their 3D locations even when the objects are not visible.
Our evaluations show a massive 3x improvement in success rate over a model that has access to the same sensory suite.
arXiv Detail & Related papers (2022-03-15T17:59:01Z) - C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks [133.40619754674066]
Goal-conditioned reinforcement learning can solve tasks in a wide range of domains, including navigation and manipulation.
We propose the distant goal-reaching task by using search at training time to automatically generate intermediate states.
E-step corresponds to planning an optimal sequence of waypoints using graph search, while the M-step aims to learn a goal-conditioned policy to reach those waypoints.
arXiv Detail & Related papers (2021-10-22T22:05:31Z) - Landmark Policy Optimization for Object Navigation Task [77.34726150561087]
This work studies object goal navigation task, which involves navigating to the closest object related to the given semantic category in unseen environments.
Recent works have shown significant achievements both in the end-to-end Reinforcement Learning approach and modular systems, but need a big step forward to be robust and optimal.
We propose a hierarchical method that incorporates standard task formulation and additional area knowledge as landmarks, with a way to extract these landmarks.
arXiv Detail & Related papers (2021-09-17T12:28:46Z) - Occlusion-Aware Search for Object Retrieval in Clutter [4.693170687870612]
We address the manipulation task of retrieving a target object from a cluttered shelf.
When the target object is hidden, the robot must search through the clutter for retrieving it.
We present a data-driven hybrid planner for generating occlusion-aware actions in closed-loop.
arXiv Detail & Related papers (2020-11-06T13:15:27Z) - Efficient Robotic Object Search via HIEM: Hierarchical Policy Learning
with Intrinsic-Extrinsic Modeling [33.89793938441333]
We present a novel policy learning paradigm for the object search task, based on hierarchical and interpretable modeling with an intrinsic-extrinsic reward setting.
Experiments conducted on the House3D environment validate and show that the robot, trained with our model, can perform the object search task in a more optimal and interpretable way.
arXiv Detail & Related papers (2020-10-16T19:21:38Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
Continually solving new, unsolved tasks is the key to learning diverse behaviors.
In the multi-task domain, where an agent needs to reach multiple goals, the choice of training goals can largely affect sample efficiency.
We propose setting up an automatic curriculum for goals that the agent needs to solve.
We evaluate our method across 13 multi-goal robotic tasks and 5 navigation tasks, and demonstrate performance gains over current state-of-the-art methods.
arXiv Detail & Related papers (2020-06-17T03:58:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.