Learning Extrinsic Dexterity with Parameterized Manipulation Primitives
- URL: http://arxiv.org/abs/2310.17785v3
- Date: Thu, 9 May 2024 14:35:34 GMT
- Title: Learning Extrinsic Dexterity with Parameterized Manipulation Primitives
- Authors: Shih-Min Yang, Martin Magnusson, Johannes A. Stork, Todor Stoyanov,
- Abstract summary: We learn a sequence of actions that utilize the environment to change the object's pose.
Our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment.
We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace.
- Score: 8.7221770019454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many practically relevant robot grasping problems feature a target object for which all grasps are occluded, e.g., by the environment. Single-shot grasp planning invariably fails in such scenarios. Instead, it is necessary to first manipulate the object into a configuration that affords a grasp. We solve this problem by learning a sequence of actions that utilize the environment to change the object's pose. Concretely, we employ hierarchical reinforcement learning to combine a sequence of learned parameterized manipulation primitives. By learning the low-level manipulation policies, our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment. Designing such a complex behavior analytically would be infeasible under uncontrolled conditions, as an analytic approach requires accurate physical modeling of the interaction and contact dynamics. In contrast, we learn a hierarchical policy model that operates directly on depth perception data, without the need for object detection, pose estimation, or manual design of controllers. We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace. Our method transfers to a real robot and is able to successfully complete the object picking task in 98\% of experimental trials. Supplementary information and videos can be found at https://shihminyang.github.io/ED-PMP/.
Related papers
- Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered.
Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics.
We present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds.
arXiv Detail & Related papers (2024-09-24T17:59:56Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - RPMArt: Towards Robust Perception and Manipulation for Articulated Objects [56.73978941406907]
We propose a framework towards Robust Perception and Manipulation for Articulated Objects ( RPMArt)
RPMArt learns to estimate the articulation parameters and manipulate the articulation part from the noisy point cloud.
We introduce an articulation-aware classification scheme to enhance its ability for sim-to-real transfer.
arXiv Detail & Related papers (2024-03-24T05:55:39Z) - Learning active tactile perception through belief-space control [21.708391958446274]
We propose a method that autonomously learns tactile exploration policies by developing a generative world model.
We evaluate our method on three simulated tasks where the goal is to estimate a desired object property.
We find that our method is able to discover policies that efficiently gather information about the desired property in an intuitive manner.
arXiv Detail & Related papers (2023-11-30T21:54:42Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Decoupling Skill Learning from Robotic Control for Generalizable Object
Manipulation [35.34044822433743]
Recent works in robotic manipulation have shown potential for tackling a range of tasks.
We conjecture that this is due to the high-dimensional action space for joint control.
In this paper, we take an alternative approach and separate the task of learning 'what to do' from 'how to do it'
The whole-body robotic kinematic control is optimized to execute the high-dimensional joint motion to reach the goals in the workspace.
arXiv Detail & Related papers (2023-03-07T16:31:13Z) - Planning for Learning Object Properties [117.27898922118946]
We formalize the problem of automatically training a neural network to recognize object properties as a symbolic planning problem.
We use planning techniques to produce a strategy for automating the training dataset creation and the learning process.
We provide an experimental evaluation in both a simulated and a real environment.
arXiv Detail & Related papers (2023-01-15T09:37:55Z) - Efficient Representations of Object Geometry for Reinforcement Learning
of Interactive Grasping Policies [29.998917158604694]
We present a reinforcement learning framework that learns the interactive grasping of various geometrically distinct real-world objects.
Videos of learned interactive policies are available at https://maltemosbach.org/io/geometry_aware_grasping_policies.
arXiv Detail & Related papers (2022-11-20T11:47:33Z) - H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding
Object Articulations from Interactions [62.510951695174604]
"Hypothesize, Simulate, Act, Update, and Repeat" (H-SAUR) is a probabilistic generative framework that generates hypotheses about how objects articulate given input observations.
We show that the proposed model significantly outperforms the current state-of-the-art articulated object manipulation framework.
We further improve the test-time efficiency of H-SAUR by integrating a learned prior from learning-based vision models.
arXiv Detail & Related papers (2022-10-22T18:39:33Z) - Discovering Objects that Can Move [55.743225595012966]
We study the problem of object discovery -- separating objects from the background without manual labels.
Existing approaches utilize appearance cues, such as color, texture, and location, to group pixels into object-like regions.
We choose to focus on dynamic objects -- entities that can move independently in the world.
arXiv Detail & Related papers (2022-03-18T21:13:56Z) - Generalizing Object-Centric Task-Axes Controllers using Keypoints [15.427056235112152]
We learn modular task policies which compose object-centric task-axes controllers.
These task-axes controllers are parameterized by properties associated with underlying objects in the scene.
Our overall approach provides a simple, modular and yet powerful framework for learning manipulation tasks.
arXiv Detail & Related papers (2021-03-18T21:08:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.