論文の概要: A Comparative study of Artificial Neural Networks Using Reinforcement
learning and Multidimensional Bayesian Classification Using Parzen Density
Estimation for Identification of GC-EIMS Spectra of Partially Methylated
Alditol Acetates
- arxiv url: http://arxiv.org/abs/2008.02072v1
- Date: Fri, 31 Jul 2020 17:54:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 05:44:02.479598
- Title: A Comparative study of Artificial Neural Networks Using Reinforcement
learning and Multidimensional Bayesian Classification Using Parzen Density
Estimation for Identification of GC-EIMS Spectra of Partially Methylated
Alditol Acetates
- Title(参考訳): 部分メチル化アルジトール酢酸のGC-EIMSスペクトル同定のためのパーゼン密度推定を用いた強化学習と多次元ベイズ分類を用いたニューラルネットワークの比較研究
- Authors: Faramarz Valafar, Homayoun Valafar
- Abstract要約: 本研究では, 部分的にメチル化アルジトール酢酸塩 (PMAA) のガスクロマトグラフィー-電子衝突質量スペクトル (GC-EIMS) データベース用パターン認識検索エンジンの開発について報告する。
開発システムはワールドワイドウェブ上に実装されており、GC-EIMS機器に記録されたこれらの分子のスペクトルを用いてPMAAを識別することを目的としている。
- 参考スコア(独自算出の注目度): 0.304585143845864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study reports the development of a pattern recognition search engine for
a World Wide Web-based database of gas chromatography-electron impact mass
spectra (GC-EIMS) of partially methylated Alditol Acetates (PMAAs). Here, we
also report comparative results for two pattern recognition techniques that
were employed for this study. The first technique is a statistical technique
using Bayesian classifiers and Parzen density estimators. The second technique
involves an artificial neural network module trained with reinforcement
learning. We demonstrate here that both systems perform well in identifying
spectra with small amounts of noise. Both system's performance degrades with
degrading signal-to-noise ratio (SNR). When dealing with partial spectra
(missing data), the artificial neural network system performs better. The
developed system is implemented on the world wide web, and is intended to
identify PMAAs using submitted spectra of these molecules recorded on any
GC-EIMS instrument. The system, therefore, is insensitive to instrument and
column dependent variations in GC-EIMS spectra.
- Abstract(参考訳): 本研究では, 部分メチル化Alditol Acetates (PMAAs) のガスクロマトグラフィー-電子衝突質量スペクトル (GC-EIMS) データベース用パターン認識検索エンジンの開発について報告する。
また,本研究に用いられた2つのパターン認識技術の比較結果を報告する。
最初の手法はベイズ分類器とパーゼン密度推定器を用いた統計手法である。
第2のテクニックは、強化学習でトレーニングされたニューラルネットワークモジュールだ。
ここでは、両システムが少量の雑音でスペクトルを特定するのに優れていることを示す。
両方のシステムの性能は劣化信号-雑音比(SNR)で劣化する。
部分スペクトル(データを見逃す)を扱う場合、人工ニューラルネットワークシステムの性能が向上する。
開発システムはワールドワイドウェブ上に実装されており、GC-EIMS機器に記録されたこれらの分子のスペクトルを用いてPMAAを識別することを目的としている。
したがって、このシステムはGC-EIMSスペクトルの計器やカラム依存の変動に敏感である。
関連論文リスト
- Spectral Graph Reasoning Network for Hyperspectral Image Classification [0.43512163406551996]
畳み込みニューラルネットワーク(CNN)は、ハイパースペクトル画像(HSI)分類において顕著な性能を達成した。
本稿では、2つの重要なモジュールからなるスペクトルグラフ推論ネットワーク(SGR)学習フレームワークを提案する。
2つのHSIデータセットの実験により、提案したアーキテクチャが分類精度を大幅に改善できることが示されている。
論文 参考訳(メタデータ) (2024-07-02T20:29:23Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
我々は拡散と変圧器技術を組み合わせたDiffSpectralNetと呼ばれる新しいネットワークを提案する。
まず,拡散モデルに基づく教師なし学習フレームワークを用いて,高レベル・低レベルのスペクトル空間的特徴を抽出する。
この拡散法はスペクトル空間の特徴を多様かつ有意義に抽出し,HSI分類の改善につながる。
論文 参考訳(メタデータ) (2023-10-29T15:26:37Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
BMSB(Halyomorpha halys)は、数種の作物を害する世界的重要性の害虫である。
本研究は、BMSB検体を検出する技術として、NIR-HSI(Near Infrared Hyperspectral Imaging)を実験室レベルで予備評価する。
論文 参考訳(メタデータ) (2023-01-19T11:37:20Z) - Electron energy loss spectroscopy database synthesis and automation of
core-loss edge recognition by deep-learning neural networks [0.0]
原スペクトルからコアロスエッジの検出と要素同定を自動化するために,畳み込み型双方向長短期記憶ニューラルネットワーク(CNN-BiLSTM)を提案する。
94.9%の精度で、提案したCNN-BiLSTMネットワークは、生スペクトルの複雑な前処理がなければ、高い精度でEELSスペクトルのコアロスエッジ認識を自動化できることを証明している。
論文 参考訳(メタデータ) (2022-09-26T20:57:34Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
我々は、通過する太陽系外惑星のスペクトルデータを解析するための教師なし手法に焦点をあてる。
スペクトルデータには、適切な低次元表現を要求する高い相関関係があることが示される。
主成分に基づく興味深い構造、すなわち、異なる化学状態に対応する明確に定義された分岐を明らかにする。
論文 参考訳(メタデータ) (2022-01-07T22:26:33Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
ハイパースペクトル画像(HSI)再構成は、2次元計測から3次元空間スペクトル信号を復元することを目的としている。
スペクトル間相互作用のモデル化は、HSI再構成に有用である。
Mask-guided Spectral-wise Transformer (MST) は,HSI再構成のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-15T16:59:48Z) - Spectral Analysis Network for Deep Representation Learning and Image
Clustering [53.415803942270685]
本稿ではスペクトル分析に基づく教師なし深層表現学習のための新しいネットワーク構造を提案する。
パッチレベルで画像間の局所的な類似性を識別できるため、閉塞に対してより堅牢である。
クラスタリングに親しみやすい表現を学習し、データサンプル間の深い相関を明らかにすることができる。
論文 参考訳(メタデータ) (2020-09-11T05:07:15Z) - Identification of 1H-NMR Spectra of Xyloglucan Oligosaccharides: A
Comparative Study of Artificial Neural Networks and Bayesian Classification
Using Nonparametric Density Estimation [0.2578242050187029]
キシログルカンオリゴ糖類(キシログルカンオリゴ糖類)として知られる複雑な炭水化物群に対する,最初の独立したコンピュータ支援自動識別システムについて報告する。
このシステムは、Artificial Neural Networks(ANN)技術を使用し、1H-NMR分光における計測器と環境依存の変動に敏感である。
論文 参考訳(メタデータ) (2020-07-30T16:29:04Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
本研究では,識別情報を捕捉し,同時に過度に適合する問題を緩和する様々な手法について検討する。
我々は、ディープニューラルネットワークにおける従来の非線形アクティベーションを置き換えるために、Max Feature Map法を採用する。
2つのデータ拡張方法と2つの深いアーキテクチャモジュールは、システムの過度な適合を減らし、差別的なパワーを維持するためにさらに検討されている。
論文 参考訳(メタデータ) (2020-07-09T08:32:06Z) - A Review of 1D Convolutional Neural Networks toward Unknown Substance
Identification in Portable Raman Spectrometer [0.0]
ラマン分光法は、品質管理から最先端の生物医学研究まで、強力な分析ツールである。
これらは、未知の物質のフィールド分析のために、最初の応答者や法執行機関によって広く採用されている。
ラマン分光法による未知物質の検出と同定は、手元にある装置のスペクトルマッチング能力に大きく依存している。
論文 参考訳(メタデータ) (2020-06-18T14:28:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。