Meta Continual Learning via Dynamic Programming
- URL: http://arxiv.org/abs/2008.02219v2
- Date: Fri, 9 Oct 2020 15:41:22 GMT
- Title: Meta Continual Learning via Dynamic Programming
- Authors: R. Krishnan, Prasanna Balaprakash
- Abstract summary: We develop a new theoretical approach for meta continual learning(MCL)
We mathematically model the learning dynamics using dynamic programming, and we establish conditions of optimality for the MCL problem.
We show that, on benchmark data sets, our theoretically grounded method achieves accuracy better than or comparable to that of existing state-of-the-art methods.
- Score: 1.0965065178451106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta continual learning algorithms seek to train a model when faced with
similar tasks observed in a sequential manner. Despite promising methodological
advancements, there is a lack of theoretical frameworks that enable analysis of
learning challenges such as generalization and catastrophic forgetting. To that
end, we develop a new theoretical approach for meta continual learning~(MCL)
where we mathematically model the learning dynamics using dynamic programming,
and we establish conditions of optimality for the MCL problem. Moreover, using
the theoretical framework, we derive a new dynamic-programming-based MCL method
that adopts stochastic-gradient-driven alternating optimization to balance
generalization and catastrophic forgetting. We show that, on MCL benchmark data
sets, our theoretically grounded method achieves accuracy better than or
comparable to that of existing state-of-the-art methods.
Related papers
- Three-Way Trade-Off in Multi-Objective Learning: Optimization,
Generalization and Conflict-Avoidance [47.42067405054353]
Multi-objective learning (MOL) problems often arise in emerging machine learning problems.
One of the critical challenges in MOL is the potential conflict among different objectives during the iterative optimization process.
Recent works have developed various dynamic weighting algorithms for MOL such as MGDA and its variants.
arXiv Detail & Related papers (2023-05-31T17:31:56Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Discriminator Augmented Model-Based Reinforcement Learning [47.094522301093775]
It is common in practice for the learned model to be inaccurate, impairing planning and leading to poor performance.
This paper aims to improve planning with an importance sampling framework that accounts for discrepancy between the true and learned dynamics.
arXiv Detail & Related papers (2021-03-24T06:01:55Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics.
Our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.
arXiv Detail & Related papers (2021-02-16T17:21:55Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z) - Double Meta-Learning for Data Efficient Policy Optimization in
Non-Stationary Environments [12.45281856559346]
We are interested in learning models of non-stationary environments, which can be framed as a multi-task learning problem.
Model-free reinforcement learning algorithms can achieve good performance in multi-task learning at a cost of extensive sampling.
While model-based approaches are among the most data efficient learning algorithms, they still struggle with complex tasks and model uncertainties.
arXiv Detail & Related papers (2020-11-21T03:19:35Z) - Modeling and Optimization Trade-off in Meta-learning [23.381986209234164]
We introduce and rigorously define the trade-off between accurate modeling and ease in meta-learning.
Taking MAML as a representative metalearning algorithm, we theoretically characterize the trade-off for general non risk functions as well as linear regression.
We also empirically solve a trade-off for metareinforcement learning benchmarks.
arXiv Detail & Related papers (2020-10-24T15:32:08Z) - Robust Inverse Reinforcement Learning under Transition Dynamics Mismatch [60.23815709215807]
We study the inverse reinforcement learning (IRL) problem under a transition dynamics mismatch between the expert and the learner.
We propose a robust MCE IRL algorithm, which is a principled approach to help with this mismatch.
arXiv Detail & Related papers (2020-07-02T14:57:13Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.