論文の概要: Zero-Shot Multi-View Indoor Localization via Graph Location Networks
- arxiv url: http://arxiv.org/abs/2008.02492v1
- Date: Thu, 6 Aug 2020 07:36:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 07:02:35.399292
- Title: Zero-Shot Multi-View Indoor Localization via Graph Location Networks
- Title(参考訳): グラフ位置ネットワークによるゼロショットマルチビュー屋内位置決め
- Authors: Meng-Jiun Chiou, Zhenguang Liu, Yifang Yin, Anan Liu, Roger Zimmermann
- Abstract要約: 屋内ローカライゼーションは、位置ベースアプリケーションにおける基本的な問題である。
本稿では,インフラストラクチャフリーで多視点画像に基づく屋内ローカライゼーションを実現するために,新しいニューラルネットワークアーキテクチャであるGraph Location Networks(GLN)を提案する。
GLNは、メッセージパッシングネットワークを通じて画像から抽出されたロバストな位置表現に基づいて位置予測を行う。
新たにゼロショット屋内ローカライズ設定を導入し,提案したGLNを専用ゼロショットバージョンに拡張することで,その課題に対処する。
- 参考スコア(独自算出の注目度): 66.05980368549928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Indoor localization is a fundamental problem in location-based applications.
Current approaches to this problem typically rely on Radio Frequency
technology, which requires not only supporting infrastructures but human
efforts to measure and calibrate the signal. Moreover, data collection for all
locations is indispensable in existing methods, which in turn hinders their
large-scale deployment. In this paper, we propose a novel neural network based
architecture Graph Location Networks (GLN) to perform infrastructure-free,
multi-view image based indoor localization. GLN makes location predictions
based on robust location representations extracted from images through
message-passing networks. Furthermore, we introduce a novel zero-shot indoor
localization setting and tackle it by extending the proposed GLN to a dedicated
zero-shot version, which exploits a novel mechanism Map2Vec to train
location-aware embeddings and make predictions on novel unseen locations. Our
extensive experiments show that the proposed approach outperforms
state-of-the-art methods in the standard setting, and achieves promising
accuracy even in the zero-shot setting where data for half of the locations are
not available. The source code and datasets are publicly available at
https://github.com/coldmanck/zero-shot-indoor-localization-release.
- Abstract(参考訳): 屋内ローカライゼーションは、位置ベースアプリケーションにおける根本的な問題である。
この問題に対する現在のアプローチは、一般的に周波数技術に依存しており、それは、インフラをサポートするだけでなく、信号の測定と校正のための人間の努力を必要とする。
さらに、すべての場所のデータ収集は既存の方法では必須であり、結果的に大規模なデプロイメントを妨げる。
本稿では,インフラストラクチャフリーで多視点画像に基づく屋内ローカライゼーションを実現する新しいニューラルネットワークアーキテクチャであるGraph Location Networks(GLN)を提案する。
GLNは、メッセージパッシングネットワークを通じて画像から抽出されたロバストな位置表現に基づいて位置予測を行う。
さらに, 提案するglnを専用ゼロショット版に拡張し, 新しい機構map2vecを利用して位置認識埋め込みを訓練し, 未知の場所における予測を行う, 新たなゼロショット屋内ローカライズ設定を提案する。
本研究では,提案手法が標準設定における最先端手法よりも優れており,半分の位置情報が利用できないゼロショット設定においても有望な精度が得られることを示す。
ソースコードとデータセットはhttps://github.com/coldmanck/zero-shot-indoor-localization-releaseで公開されている。
関連論文リスト
- FlexLoc: Conditional Neural Networks for Zero-Shot Sensor Perspective Invariance in Object Localization with Distributed Multimodal Sensors [6.676517041445593]
我々は、条件付きニューラルネットワークを用いてノードの視点情報を注入し、ローカライゼーションパイプラインに適応するFlexLocを紹介した。
マルチモーダル・マルチビュー屋内追跡データセットを用いた評価では,ゼロショットの場合,FlexLoc はローカライズ精度を約50%向上することが示された。
論文 参考訳(メタデータ) (2024-06-10T21:02:53Z) - IndoorGNN: A Graph Neural Network based approach for Indoor Localization
using WiFi RSSI [3.495640663645263]
我々は,グラフニューラルネットワーク(GNN)に基づくアルゴリズムを用いて,特定の位置を特定の領域に分類する手法「屋内GNN」を開発した。
この分類を行うMLアルゴリズムのほとんどは、多数のラベル付きデータポイントを必要とする。
実験の結果,IndoorGNNは現状の既存手法やGNNベースの手法と比較して,位置予測精度が向上していることがわかった。
論文 参考訳(メタデータ) (2023-12-11T17:12:51Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
世界規模のジオローカライゼーションは、地球上のどこでも撮影された画像の正確な位置を特定することを目的としている。
既存のアプローチは、地球を離散的な地理的細胞に分割し、問題を分類タスクに変換する。
画像と対応するGPS位置のアライメントを強制する新しいCLIPにインスパイアされた画像-GPS検索手法であるGeoCLIPを提案する。
論文 参考訳(メタデータ) (2023-09-27T20:54:56Z) - Yes, we CANN: Constrained Approximate Nearest Neighbors for local
feature-based visual localization [2.915868985330569]
Constrained Approximate Nearest Neighbors (CANN) は、局所的特徴のみを用いて、幾何学と外観空間の両方にわたって k-アネレスト近傍の合同解である。
提案手法は,現在最先端のグローバルな特徴量検索と,局所的な特徴量集計手法を用いたアプローチの両方に優れる。
論文 参考訳(メタデータ) (2023-06-15T10:12:10Z) - LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning [59.17191114000146]
LocUNet: 基地局(BSs)からの受信信号強度(RSS)のみに基づく深層学習手法
提案手法では,BSsからのRSSを,クラウド上に存在する可能性のある中央処理ユニット(CPU)にローカライズする。
推定されたBSのパスロスラジオマップを用いて、LocUNetは最先端の精度でユーザをローカライズし、無線マップの不正確性に対して高い堅牢性を享受する。
論文 参考訳(メタデータ) (2022-02-01T20:27:46Z) - Hierarchical Multi-Building And Multi-Floor Indoor Localization Based On
Recurrent Neural Networks [2.0305676256390934]
Wi-Fiフィンガープリントを用いたリカレントニューラルネットワーク(RNN)に基づく階層型マルチビルディングとマルチフロア屋内ローカライゼーションを提案する。
提案手法は建物と床をそれぞれ100%と95.24%の精度で推定し、三次元位置決め誤差は8.62mである。
論文 参考訳(メタデータ) (2021-12-23T11:56:31Z) - Markov Localisation using Heatmap Regression and Deep Convolutional
Odometry [59.33322623437816]
我々は,最新のディープラーニングハードウェアを活用する新しいCNNベースのローカライゼーション手法を提案する。
画像に基づくローカライゼーションと,1つのニューラルネットワーク内でのオドメトリーに基づく確率伝搬を行うハイブリッドCNNを作成する。
論文 参考訳(メタデータ) (2021-06-01T10:28:49Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z) - Real-time Localization Using Radio Maps [59.17191114000146]
パスロスに基づく簡易かつ効果的なローカライゼーション法を提案する。
提案手法では, 受信した信号強度を, 既知の位置を持つ基地局の集合から報告する。
論文 参考訳(メタデータ) (2020-06-09T16:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。