論文の概要: Quantum sensing of open systems: Estimation of damping constants and
temperature
- arxiv url: http://arxiv.org/abs/2008.02728v1
- Date: Thu, 6 Aug 2020 15:56:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-06 23:59:30.495720
- Title: Quantum sensing of open systems: Estimation of damping constants and
temperature
- Title(参考訳): オープンシステムの量子センシング:減衰定数と温度の推定
- Authors: Jiaxuan Wang, Luiz Davidovich and Girish Saran Agarwal
- Abstract要約: 減衰定数と損失ボソニックチャネルの温度を推定するための量子精度限界を決定する。
直接の応用は透明スラブの吸収と温度の推定に光を用いることである。
- 参考スコア(独自算出の注目度): 1.2891210250935146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We determine quantum precision limits for estimation of damping constants and
temperature of lossy bosonic channels. A direct application would be the use of
light for estimation of the absorption and the temperature of a transparent
slab. Analytic lower bounds are obtained for the uncertainty in the estimation,
through a purification procedure that replaces the master equation description
by a unitary evolution involving the system and ad hoc environments. For zero
temperature, Fock states are shown to lead to the minimal uncertainty in the
estimation of damping, with boson-counting being the best measurement
procedure. In both damping and temperature estimates, sequential
pre-thermalization measurements, through a stream of single bosons, may lead to
huge gain in precision.
- Abstract(参考訳): 減衰定数と損失ボソニックチャネルの温度を推定するための量子精度限界を決定する。
直接の用途は、透明なスラブの吸収と温度の推定に光を使うことである。
システムとアドホック環境を含む一元的進化によってマスター方程式の記述を置換する精製手順により, 推定の不確かさを解析的に下限とする。
ゼロ温度の場合、フォック状態は減衰の推定における最小の不確実性をもたらすことが示され、ボソンカウントが最良の測定方法である。
減衰と温度推定の両方において、連続的な予熱測定は単一のボソンの流れを通して、精度の大幅な向上をもたらす可能性がある。
関連論文リスト
- Achieving Heisenberg scaling in low-temperature quantum thermometry [12.08205328571395]
低温状態におけるハイゼンベルクのスケーリングは、測定軸をわずか$pi/2$回転させることで達成できる。
独立温度計のパラダイムとは対照的に,提案手法は低温測定の精度を大幅に向上させるものである。
論文 参考訳(メタデータ) (2024-07-08T09:14:49Z) - Low-temperature quantum thermometry boosted by coherence generation [0.0]
温度計プローブに量子コヒーレンスを発生させることにより温度範囲と感度を向上させる低温測定法を提案する。
我々は,2レベル量子システム(qubit)をプローブとして使用し,アンシラ量子ビットの集合をインターフェースとして導入することにより,試料への直接プローブアクセスを防止する。
論文 参考訳(メタデータ) (2022-11-10T10:12:58Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
ジャジンスキー等式から動機付けられたアルゴリズムを用いて, 有限温度可観測体がどのように得られるかを示す。
長範囲の逆場イジングモデルにおける有限温度相転移は、捕捉されたイオン量子シミュレータで特徴づけられることを示す。
論文 参考訳(メタデータ) (2022-06-03T18:00:02Z) - Measurement of the Low-temperature Loss Tangent of High-resistivity
Silicon with a High Q-factor Superconducting Resonator [58.720142291102135]
温度70mKから1Kの範囲で高比抵抗(100)シリコンウェハの直接損失タンジェント測定を行った。
この測定は, 高温超伝導ニオブ共振器を利用した技術を用いて行った。
論文 参考訳(メタデータ) (2021-08-19T20:13:07Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
奇数パリティ部分空間の適切な包含は、中間温度範囲における最大忠実度感受性の向上につながることを示す。
正しい低温の挙動は、2つの最も低い多体エネルギー固有状態を含む近似によって捉えられる。
論文 参考訳(メタデータ) (2021-05-11T14:08:02Z) - Taking the temperature of a pure quantum state [55.41644538483948]
温度は一見単純な概念で、量子物理学研究の最前線ではまだ深い疑問が浮かび上がっています。
本稿では,量子干渉による純状態の温度測定手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T18:18:37Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
捕捉イオンを用いた最適なフォノン温度推定のための断熱法を提案する。
フォノンの熱分布に関する関連する情報は、スピンの集合的な自由度に伝達することができる。
それぞれの熱状態確率は、各スピン励起構成に近似的にマッピングされることを示す。
論文 参考訳(メタデータ) (2020-12-16T12:58:08Z) - Global Quantum Thermometry [0.0]
我々は、測定データが少ない場合や、十分な事前知識が得られていない場合の温度を推定するために、地球規模の量子温度測定の理論を構築した。
スケーリングの議論に基づいて、平均対数誤差が温度測定の正解であることを示す。
これらの結果は、スピンガスの測定結果のシミュレーション結果に適用し、局所的なアプローチが温度推定に偏りをもたらすことを確かめる。
論文 参考訳(メタデータ) (2020-11-25T20:53:44Z) - Optimal Quantum Thermometry with Coarse-grained Measurements [0.0]
粗い粒度しか測定できない場合の温度推定の精度限界について検討する。
本結果は多体系および非平衡熱測定に応用する。
論文 参考訳(メタデータ) (2020-11-20T17:12:55Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
本稿では,集団遷移現象が量子力学プロトコルに与える影響について考察する。
単一球面量子スピン(SQS)は平均場レベルでの分析的な洞察を可能にするステレオタイプ玩具モデルとして機能する。
論文 参考訳(メタデータ) (2020-01-09T19:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。