Integration of the 3D Environment for UAV Onboard Visual Object Tracking
- URL: http://arxiv.org/abs/2008.02834v3
- Date: Thu, 29 Oct 2020 10:20:21 GMT
- Title: Integration of the 3D Environment for UAV Onboard Visual Object Tracking
- Authors: St\'ephane Vujasinovi\'c, Stefan Becker, Timo Breuer, Sebastian
Bullinger, Norbert Scherer-Negenborn, Michael Arens
- Abstract summary: Single visual object tracking from an unmanned aerial vehicle poses fundamental challenges.
We introduce a pipeline that combines a model-free visual object tracker, a sparse 3D reconstruction, and a state estimator.
By representing the position of the target in 3D space rather than in image space, we stabilize the tracking during ego-motion.
- Score: 7.652259812856325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single visual object tracking from an unmanned aerial vehicle (UAV) poses
fundamental challenges such as object occlusion, small-scale objects,
background clutter, and abrupt camera motion. To tackle these difficulties, we
propose to integrate the 3D structure of the observed scene into a
detection-by-tracking algorithm. We introduce a pipeline that combines a
model-free visual object tracker, a sparse 3D reconstruction, and a state
estimator. The 3D reconstruction of the scene is computed with an image-based
Structure-from-Motion (SfM) component that enables us to leverage a state
estimator in the corresponding 3D scene during tracking. By representing the
position of the target in 3D space rather than in image space, we stabilize the
tracking during ego-motion and improve the handling of occlusions, background
clutter, and small-scale objects. We evaluated our approach on prototypical
image sequences, captured from a UAV with low-altitude oblique views. For this
purpose, we adapted an existing dataset for visual object tracking and
reconstructed the observed scene in 3D. The experimental results demonstrate
that the proposed approach outperforms methods using plain visual cues as well
as approaches leveraging image-space-based state estimations. We believe that
our approach can be beneficial for traffic monitoring, video surveillance, and
navigation.
Related papers
- Towards Generalizable Multi-Camera 3D Object Detection via Perspective
Debiasing [28.874014617259935]
Multi-Camera 3D Object Detection (MC3D-Det) has gained prominence with the advent of bird's-eye view (BEV) approaches.
We propose a novel method that aligns 3D detection with 2D camera plane results, ensuring consistent and accurate detections.
arXiv Detail & Related papers (2023-10-17T15:31:28Z) - Tracking by 3D Model Estimation of Unknown Objects in Videos [122.56499878291916]
We argue that this representation is limited and instead propose to guide and improve 2D tracking with an explicit object representation.
Our representation tackles a complex long-term dense correspondence problem between all 3D points on the object for all video frames.
The proposed optimization minimizes a novel loss function to estimate the best 3D shape, texture, and 6DoF pose.
arXiv Detail & Related papers (2023-04-13T11:32:36Z) - OA-BEV: Bringing Object Awareness to Bird's-Eye-View Representation for
Multi-Camera 3D Object Detection [78.38062015443195]
OA-BEV is a network that can be plugged into the BEV-based 3D object detection framework.
Our method achieves consistent improvements over the BEV-based baselines in terms of both average precision and nuScenes detection score.
arXiv Detail & Related papers (2023-01-13T06:02:31Z) - 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone [10.341296683155973]
We propose using a self-supervised training strategy to learn a general point cloud backbone model for downstream 3D vision tasks.
Our main contribution leverages learned flow and motion representations and combines a self-supervised backbone with a 3D detection head.
Experiments on KITTI and nuScenes benchmarks show that the proposed self-supervised pre-training increases 3D detection performance significantly.
arXiv Detail & Related papers (2022-05-02T07:53:29Z) - MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty
Propagation [4.202461384355329]
We propose MonoRUn, a novel 3D object detection framework that learns dense correspondences and geometry in a self-supervised manner.
Our proposed approach outperforms current state-of-the-art methods on KITTI benchmark.
arXiv Detail & Related papers (2021-03-23T15:03:08Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Tracking Emerges by Looking Around Static Scenes, with Neural 3D Mapping [23.456046776979903]
We propose to leverage multiview data of textitstatic points in arbitrary scenes (static or dynamic) to learn a neural 3D mapping module.
The neural 3D mapper consumes RGB-D data as input, and produces a 3D voxel grid of deep features as output.
We show that our unsupervised 3D object trackers outperform prior unsupervised 2D and 2.5D trackers, and approach the accuracy of supervised trackers.
arXiv Detail & Related papers (2020-08-04T02:59:23Z) - Kinematic 3D Object Detection in Monocular Video [123.7119180923524]
We propose a novel method for monocular video-based 3D object detection which carefully leverages kinematic motion to improve precision of 3D localization.
We achieve state-of-the-art performance on monocular 3D object detection and the Bird's Eye View tasks within the KITTI self-driving dataset.
arXiv Detail & Related papers (2020-07-19T01:15:12Z) - Single View Metrology in the Wild [94.7005246862618]
We present a novel approach to single view metrology that can recover the absolute scale of a scene represented by 3D heights of objects or camera height above the ground.
Our method relies on data-driven priors learned by a deep network specifically designed to imbibe weakly supervised constraints from the interplay of the unknown camera with 3D entities such as object heights.
We demonstrate state-of-the-art qualitative and quantitative results on several datasets as well as applications including virtual object insertion.
arXiv Detail & Related papers (2020-07-18T22:31:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.