Towards Flexible 3D Perception: Object-Centric Occupancy Completion Augments 3D Object Detection
- URL: http://arxiv.org/abs/2412.05154v1
- Date: Fri, 06 Dec 2024 16:12:38 GMT
- Title: Towards Flexible 3D Perception: Object-Centric Occupancy Completion Augments 3D Object Detection
- Authors: Chaoda Zheng, Feng Wang, Naiyan Wang, Shuguang Cui, Zhen Li,
- Abstract summary: Occupancy has emerged as a promising alternative for 3D scene perception.
We introduce object-centric occupancy as a supplement to object bboxes.
We show that our occupancy features significantly enhance the detection results of state-of-the-art 3D object detectors.
- Score: 54.78470057491049
- License:
- Abstract: While 3D object bounding box (bbox) representation has been widely used in autonomous driving perception, it lacks the ability to capture the precise details of an object's intrinsic geometry. Recently, occupancy has emerged as a promising alternative for 3D scene perception. However, constructing a high-resolution occupancy map remains infeasible for large scenes due to computational constraints. Recognizing that foreground objects only occupy a small portion of the scene, we introduce object-centric occupancy as a supplement to object bboxes. This representation not only provides intricate details for detected objects but also enables higher voxel resolution in practical applications. We advance the development of object-centric occupancy perception from both data and algorithm perspectives. On the data side, we construct the first object-centric occupancy dataset from scratch using an automated pipeline. From the algorithmic standpoint, we introduce a novel object-centric occupancy completion network equipped with an implicit shape decoder that manages dynamic-size occupancy generation. This network accurately predicts the complete object-centric occupancy volume for inaccurate object proposals by leveraging temporal information from long sequences. Our method demonstrates robust performance in completing object shapes under noisy detection and tracking conditions. Additionally, we show that our occupancy features significantly enhance the detection results of state-of-the-art 3D object detectors, especially for incomplete or distant objects in the Waymo Open Dataset.
Related papers
- Local Occupancy-Enhanced Object Grasping with Multiple Triplanar Projection [24.00828999360765]
This paper addresses the challenge of robotic grasping of general objects.
The proposed model first runs by proposing a number of most likely grasp points in the scene.
Around each grasp point, a module is designed to infer any voxel in its neighborhood to be either void or occupied by some object.
The model further estimates 6-DoF grasp poses utilizing the local occupancy-enhanced object shape information.
arXiv Detail & Related papers (2024-07-22T16:22:28Z) - OPEN: Object-wise Position Embedding for Multi-view 3D Object Detection [102.0744303467713]
We propose a new multi-view 3D object detector named OPEN.
Our main idea is to effectively inject object-wise depth information into the network through our proposed object-wise position embedding.
OPEN achieves a new state-of-the-art performance with 64.4% NDS and 56.7% mAP on the nuScenes test benchmark.
arXiv Detail & Related papers (2024-07-15T14:29:15Z) - Perspective-aware Convolution for Monocular 3D Object Detection [2.33877878310217]
We propose a novel perspective-aware convolutional layer that captures long-range dependencies in images.
By enforcing convolutional kernels to extract features along the depth axis of every image pixel, we incorporates perspective information into network architecture.
We demonstrate improved performance on the KITTI3D dataset, achieving a 23.9% average precision in the easy benchmark.
arXiv Detail & Related papers (2023-08-24T17:25:36Z) - OA-BEV: Bringing Object Awareness to Bird's-Eye-View Representation for
Multi-Camera 3D Object Detection [78.38062015443195]
OA-BEV is a network that can be plugged into the BEV-based 3D object detection framework.
Our method achieves consistent improvements over the BEV-based baselines in terms of both average precision and nuScenes detection score.
arXiv Detail & Related papers (2023-01-13T06:02:31Z) - Object-level 3D Semantic Mapping using a Network of Smart Edge Sensors [25.393382192511716]
We extend a multi-view 3D semantic mapping system consisting of a network of distributed edge sensors with object-level information.
Our method is evaluated on the public Behave dataset where it shows pose estimation within a few centimeters and in real-world experiments with the sensor network in a challenging lab environment.
arXiv Detail & Related papers (2022-11-21T11:13:08Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
Two popular voxel-based 3D object detection methods are studied in this paper.
Our experiments show that these methods mostly fail to detect distant small objects due to the sparsity of the input point clouds at large distances.
Our findings suggest that a considerable part of the computations of existing methods is focused on locations of the scene that do not contribute with successful detection.
arXiv Detail & Related papers (2021-05-21T12:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.