Twin-field quantum key distribution with fully discrete phase
randomization
- URL: http://arxiv.org/abs/2008.03222v1
- Date: Fri, 7 Aug 2020 15:31:18 GMT
- Title: Twin-field quantum key distribution with fully discrete phase
randomization
- Authors: Guillermo Curr\'as-Lorenzo, Lewis Wooltorton, Mohsen Razavi
- Abstract summary: We propose and prove the security of a TF-QKD variant that relies exclusively on discrete phase randomisation.
Results show that it can also provide higher secret-key rates than counterpart protocols that rely on continuous phase randomisation.
- Score: 1.0312968200748116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Twin-field (TF) quantum key distribution (QKD) can overcome fundamental
secret-key-rate bounds on point-to-point QKD links, allowing us to reach longer
distances than ever before. Since its introduction, several TF-QKD variants
have been proposed, and some of them have already been implemented
experimentally. Most of them assume that the users can emit weak coherent
pulses with a continuous random phase. In practice, this assumption is often
not satisfied, which could open up security loopholes in their implementations.
To close this loophole, we propose and prove the security of a TF-QKD variant
that relies exclusively on discrete phase randomisation. Remarkably, our
results show that it can also provide higher secret-key rates than counterpart
protocols that rely on continuous phase randomisation.
Related papers
- Existential Unforgeability in Quantum Authentication From Quantum Physical Unclonable Functions Based on Random von Neumann Measurement [45.386403865847235]
Physical Unclonable Functions (PUFs) leverage inherent, non-clonable physical randomness to generate unique input-output pairs.
Quantum PUFs (QPUFs) extend this concept by using quantum states as input-output pairs.
We show that random unitary QPUFs cannot achieve existential unforgeability against Quantum Polynomial Time adversaries.
We introduce a second model where the QPUF functions as a nonunitary quantum channel, which guarantees existential unforgeability.
arXiv Detail & Related papers (2024-04-17T12:16:41Z) - Secret key rate bounds for quantum key distribution with non-uniform
phase randomization [0.0]
Decoy-state quantum key distribution (QKD) is undoubtedly the most efficient solution to handle multi-photon signals emitted by laser sources.
It provides the same secret key rate scaling as ideal single-photon sources.
It requires, however, that the phase of each emitted pulse is uniformly random.
arXiv Detail & Related papers (2023-04-07T09:51:13Z) - Single Flux Quantum-Based Digital Control of Superconducting Qubits in a
Multi-Chip Module [39.5906786952554]
We introduce a multi-chip module architecture to suppress phonon-mediated QP poisoning.
We demonstrate an error per Clifford gate of 1.2(1)%, an order-of-magnitude reduction over the gate error achieved in the initial realization of SFQ-based qubit control.
arXiv Detail & Related papers (2023-01-13T18:37:08Z) - Twin-field quantum key distribution with partial phase postselection [13.534186932974507]
Quantum key distribution (QKD) allows two remote parties to share information-theoretically secure keys.
Phase-randomization and subsequent postselection play important roles in its security proof.
We propose a TF-QKD protocol with partial phase postselection.
arXiv Detail & Related papers (2022-11-23T03:51:03Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Finite-key analysis for quantum key distribution with discrete phase
randomization [21.561489948824274]
We develop a technique based on conjugate measurement and quantum state distinguishment to ana-lyze the security.
Our result shows that TF-QKD with reasonable number of discrete random phases, e.g. 8 phases from 0, pi/4, pi/2,..., 7pi/4, can achieve satisfactory performance.
arXiv Detail & Related papers (2022-01-09T15:45:44Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Twin-field quantum key distribution with passive-decoy state [22.26373392802507]
We propose passive-decoy based TF-QKD, in which we combine TF-QKD with the passive-decoy method.
We present a simulation comparing the key generation rate with that in active-decoy, the result shows our scheme performs as good as active decoy TF-QKD.
arXiv Detail & Related papers (2020-11-15T04:02:48Z) - Twin-field quantum key distribution with discrete-phase-randomized
sources [16.87098773668496]
We propose a TF-QKD variant with discrete-phase-randomized sources both in the code mode and test mode.
Our simulation results indicate that, with only a small number of discrete phases, the performance of discrete-phase-randomized sources can overcome the rate-loss bound.
arXiv Detail & Related papers (2020-08-12T12:54:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.