Characterising higher-order phase correlations in gain-switched laser sources with application to quantum key distribution
- URL: http://arxiv.org/abs/2412.03738v1
- Date: Wed, 04 Dec 2024 22:06:13 GMT
- Title: Characterising higher-order phase correlations in gain-switched laser sources with application to quantum key distribution
- Authors: Alessandro Marcomini, Guillermo CurrĂ¡s-Lorenzo, Davide Rusca, Angel Valle, Kiyoshi Tamaki, Marcos Curty,
- Abstract summary: Multi-photon emissions in laser sources represent a serious threat for the security of quantum key distribution.
We introduce experimental schemes to characterise the phase probability distribution of the emitted pulses.
We demonstrate that an optimisation task over interferometric measures suffices in determining the impact of arbitrary order correlations.
- Score: 38.00713966087315
- License:
- Abstract: Multi-photon emissions in laser sources represent a serious threat for the security of quantum key distribution (QKD). While the decoy-state technique allows to solve this problem, it requires uniform phase randomisation of the emitted pulses. However, gain-switched lasers operating at high repetition rates do not fully satisfy this requirement, as residual photons in the laser cavity introduce correlations between the phases of consecutive pulses. Here, we introduce experimental schemes to characterise the phase probability distribution of the emitted pulses, and demonstrate that an optimisation task over interferometric measures suffices in determining the impact of arbitrary order correlations, which ultimately establishes the security level of the implementation according to recent security proofs. We expect that our findings may find usages beyond QKD as well.
Related papers
- Intensity correlations in decoy-state BB84 quantum key distribution systems [0.0]
We show that higher-order correlations on the intensity of the generated signals can be much higher than that of nearest-neighbour correlations.
We experimentally confirm that the impact of higher-order correlations on the intensity of the generated signals can be much higher than that of nearest-neighbour correlations.
arXiv Detail & Related papers (2024-11-01T16:18:39Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Imperfect Phase-Randomisation and Generalised Decoy-State Quantum Key
Distribution [0.0]
We generalise decoy-state analysis to accommodate laser sources that emit imperfectly phase-randomised states.
We also develop theoretical tools to prove the security of protocols with lasers that emit pulses that are independent, but not identically distributed.
arXiv Detail & Related papers (2023-04-19T03:34:40Z) - Secret key rate bounds for quantum key distribution with non-uniform
phase randomization [0.0]
Decoy-state quantum key distribution (QKD) is undoubtedly the most efficient solution to handle multi-photon signals emitted by laser sources.
It provides the same secret key rate scaling as ideal single-photon sources.
It requires, however, that the phase of each emitted pulse is uniformly random.
arXiv Detail & Related papers (2023-04-07T09:51:13Z) - Security of quantum key distribution with imperfect phase randomisation [0.0]
We provide a security proof for decoy-state QKD with correlated phases that offers key rates close to the ideal scenario.
Our work paves the way towards high-performance secure QKD with practical laser sources, and may have applications beyond QKD.
arXiv Detail & Related papers (2022-10-15T03:57:56Z) - Phase Randomness in a Semiconductor Laser: the Issue of Quantum Random
Number Generation [83.48996461770017]
This paper describes theoretical and experimental methods for estimating the degree of phase randomization in a gain-switched laser.
We show that the interference signal remains quantum in nature even in the presence of classical phase drift in the interferometer.
arXiv Detail & Related papers (2022-09-20T14:07:39Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Phase randomness in a gain-switched semiconductor laser: stochastic
differential equation analysis [55.41644538483948]
We performed theoretical analysis of the phase randomness in a gain-switched semiconductor laser in the context of its application as a quantum entropy source.
Numerical simulations demonstrate that phase diffusion r.m.s. exhibits non-linear dependence on the bias current.
It is shown that phase diffusion between laser pulses cannot always be assumed to exhibit required efficiency.
arXiv Detail & Related papers (2020-11-20T13:35:35Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.