Point or Generate Dialogue State Tracker
- URL: http://arxiv.org/abs/2008.03417v1
- Date: Sat, 8 Aug 2020 02:15:25 GMT
- Title: Point or Generate Dialogue State Tracker
- Authors: Song Xiaohui and Hu Songlin
- Abstract summary: We propose the Point-Or-Generate Dialogue State Tracker (POGD)
POGD points out explicitly expressed slot values from the user's utterance, and generates implicitly expressed ones based on slot-specific contexts.
Experiments show that POGD not only obtains state-of-the-art results on both WoZ 2.0 and MultiWoZ 2.0 datasets but also has good generalization on unseen values and new slots.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dialogue state tracking is a key part of a task-oriented dialogue system,
which estimates the user's goal at each turn of the dialogue. In this paper, we
propose the Point-Or-Generate Dialogue State Tracker (POGD). POGD solves the
dialogue state tracking task in two perspectives: 1) point out explicitly
expressed slot values from the user's utterance, and 2) generate implicitly
expressed ones based on slot-specific contexts. It also shares parameters
across all slots, which achieves knowledge sharing and gains scalability to
large-scale across-domain dialogues. Moreover, the training process of its
submodules is formulated as a multi-task learning procedure to further promote
its capability of generalization. Experiments show that POGD not only obtains
state-of-the-art results on both WoZ 2.0 and MultiWoZ 2.0 datasets but also has
good generalization on unseen values and new slots.
Related papers
- FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
We present a flexible neural framework that can integrate contextual information from multiple channels.
We evaluate our model on the MSDialog dataset widely used for evaluating conversational response ranking tasks.
arXiv Detail & Related papers (2023-03-31T23:58:28Z) - Zero-Shot Generalizable End-to-End Task-Oriented Dialog System using
Context Summarization and Domain Schema [2.7178968279054936]
State-of-the-art approaches in task-oriented dialog systems formulate the problem as a conditional sequence generation task.
This requires labeled training data for each new domain or task.
We introduce a novel Zero-Shot generalizable end-to-end Task-oriented Dialog system, ZS-ToD.
arXiv Detail & Related papers (2023-03-28T18:56:31Z) - Act-Aware Slot-Value Predicting in Multi-Domain Dialogue State Tracking [5.816391291790977]
Dialogue state tracking (DST) aims to track human-machine interactions and generate state representations for managing the dialogue.
Recent advances in machine reading comprehension predict both categorical and non-categorical types of slots for dialogue state tracking.
We formulate and incorporate dialogue acts, and leverage recent advances in machine reading comprehension to predict both categorical and non-categorical types of slots for dialogue state tracking.
arXiv Detail & Related papers (2022-08-04T05:18:30Z) - Back to the Future: Bidirectional Information Decoupling Network for
Multi-turn Dialogue Modeling [80.51094098799736]
We propose Bidirectional Information Decoupling Network (BiDeN) as a universal dialogue encoder.
BiDeN explicitly incorporates both the past and future contexts and can be generalized to a wide range of dialogue-related tasks.
Experimental results on datasets of different downstream tasks demonstrate the universality and effectiveness of our BiDeN.
arXiv Detail & Related papers (2022-04-18T03:51:46Z) - User Satisfaction Estimation with Sequential Dialogue Act Modeling in
Goal-oriented Conversational Systems [65.88679683468143]
We propose a novel framework, namely USDA, to incorporate the sequential dynamics of dialogue acts for predicting user satisfaction.
USDA incorporates the sequential transitions of both content and act features in the dialogue to predict the user satisfaction.
Experimental results on four benchmark goal-oriented dialogue datasets show that the proposed method substantially and consistently outperforms existing methods on USE.
arXiv Detail & Related papers (2022-02-07T02:50:07Z) - A Unified Pre-training Framework for Conversational AI [25.514505462661763]
PLATO-2 is trained via two-stage curriculum learning to fit the simplified one-to-one mapping relationship.
PLATO-2 has obtained the 1st place in all three tasks, verifying its effectiveness as a unified framework for various dialogue systems.
arXiv Detail & Related papers (2021-05-06T07:27:11Z) - Slot Self-Attentive Dialogue State Tracking [22.187581131353948]
We propose a slot self-attention mechanism that can learn the slot correlations automatically.
We conduct comprehensive experiments on two multi-domain task-oriented dialogue datasets.
arXiv Detail & Related papers (2021-01-22T22:48:51Z) - Modelling Hierarchical Structure between Dialogue Policy and Natural
Language Generator with Option Framework for Task-oriented Dialogue System [49.39150449455407]
HDNO is an option framework for designing latent dialogue acts to avoid designing specific dialogue act representations.
We test HDNO on MultiWoz 2.0 and MultiWoz 2.1, the datasets on multi-domain dialogues, in comparison with word-level E2E model trained with RL, LaRL and HDSA.
arXiv Detail & Related papers (2020-06-11T20:55:28Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
This paper proposes to track dialogue states gradually with reasoning over dialogue turns with the help of the back-end data.
Empirical results demonstrate that our method significantly outperforms the state-of-the-art methods by 38.6% in terms of joint belief accuracy for MultiWOZ 2.1.
arXiv Detail & Related papers (2020-05-27T02:05:33Z) - UniConv: A Unified Conversational Neural Architecture for Multi-domain
Task-oriented Dialogues [101.96097419995556]
"UniConv" is a novel unified neural architecture for end-to-end conversational systems in task-oriented dialogues.
We conduct comprehensive experiments in dialogue state tracking, context-to-text, and end-to-end settings on the MultiWOZ2.1 benchmark.
arXiv Detail & Related papers (2020-04-29T16:28:22Z) - Hierarchical Context Enhanced Multi-Domain Dialogue System for
Multi-domain Task Completion [17.66372217976539]
This paper describes our submitted solution, Hierarchical Context Enhanced Dialogue System (HCEDS)
The main motivation of our system is to comprehensively explore the potential of hierarchical context for sufficiently understanding complex dialogues.
Results listed in the leaderboard show that our system achieves first place in automatic evaluation and the second place in human evaluation.
arXiv Detail & Related papers (2020-03-03T05:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.