Quantum Power Method by a Superposition of Time-Evolved States
- URL: http://arxiv.org/abs/2008.03661v3
- Date: Fri, 5 Mar 2021 07:01:36 GMT
- Title: Quantum Power Method by a Superposition of Time-Evolved States
- Authors: Kazuhiro Seki, Seiji Yunoki
- Abstract summary: We show that the number of gates required for approximating $hatcal Hn$ scales linearly in the power and the number of qubits.
Using numerical simulation, we show that the power method can control systematic errors in approximating the Hamiltonian power $hatcal Hn$ for $n$ as large as 100.
- Score: 0.9137554315375919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a quantum-classical hybrid algorithm of the power method, here
dubbed as quantum power method, to evaluate $\hat{\cal H}^n |\psi\rangle$ with
quantum computers, where $n$ is a nonnegative integer, $\hat{\cal H}$ is a
time-independent Hamiltonian of interest, and $|\psi \rangle$ is a quantum
state. We show that the number of gates required for approximating $\hat{\cal
H}^n$ scales linearly in the power and the number of qubits, making it a
promising application for near term quantum computers. Using numerical
simulation, we show that the power method can control systematic errors in
approximating the Hamiltonian power ${\hat{\cal H}^n}$ for $n$ as large as 100.
As an application, we combine our method with a multireference
Krylov-subspace-diagonalization scheme to show how one can improve the
estimation of ground-state energies and the ground-state fidelities found using
a variational-quantum-eigensolver scheme. Finally, we outline other
applications of the quantum power method, including several moment-based
methods. We numerically demonstrate the connected-moment expansion for the
imaginary-time evolution and compare the results with the multireference
Krylov-subspace diagonalization.
Related papers
- Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - Quantum random power method for ground state computation [0.0]
We present a quantum-classical hybrid random power method that approximates a Hamiltonian ground state.
We show that our method converges to an approximation of a ground state of the Hamiltonian.
arXiv Detail & Related papers (2024-08-16T06:41:16Z) - A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Spin coupling is all you need: Encoding strong electron correlation on quantum computers [0.0]
We show that quantum computers can efficiently simulate strongly correlated molecular systems by directly encoding the dominant entanglement structure in the form of spin-coupled initial states.
Our work paves the way towards scalable quantum simulation of electronic structure for classically challenging systems.
arXiv Detail & Related papers (2024-04-29T17:14:21Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - A generalized framework for quantum state discrimination, hybrid
algorithms, and the quantum change point problem [3.4683494246563606]
We present a hybrid quantum-classical algorithm based on semidefinite programming to calculate the maximum reward when the states are pure and have efficient circuits.
We give now-possible algorithms for the quantum change point identification problem which asks, given a sequence of quantum states, determine the time steps when the quantum states changed.
arXiv Detail & Related papers (2023-12-07T03:42:40Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Calculation of generating function in many-body systems with quantum
computers: technical challenges and use in hybrid quantum-classical methods [0.0]
The generating function of a Hamiltonian $H$ is defined as $F(t)=langle e-itHrangle$, where $t$ is the time and where the expectation value is taken on a given initial quantum state.
We show how the information content of this function can be used a posteriori on classical computers to solve quantum many-body problems.
arXiv Detail & Related papers (2021-04-16T15:44:27Z) - Hamiltonian operator approximation for energy measurement and ground
state preparation [23.87373187143897]
We show how to approximate the Hamiltonian operator as a sum of propagators using a differential representation.
The proposed approach, named Hamiltonian operator approximation (HOA), is designed to benefit analog quantum simulators.
arXiv Detail & Related papers (2020-09-07T18:11:00Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.