Modification of quantum many-body relaxation by perturbations exhibiting
a banded matrix structure
- URL: http://arxiv.org/abs/2008.03745v1
- Date: Sun, 9 Aug 2020 15:29:01 GMT
- Title: Modification of quantum many-body relaxation by perturbations exhibiting
a banded matrix structure
- Authors: Lennart Dabelow, Patrick Vorndamme, and Peter Reimann
- Abstract summary: We investigate how the observable relaxation behavior of an isolated quantum many-body system is modified in response to weak-to-moderate perturbations.
A key role is played by the so-called perturbation profile, which characterizes the dependence of the perturbation matrix elements in the eigenbasis of the unperturbed Hamiltonian.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate how the observable relaxation behavior of an isolated quantum
many-body system is modified in response to weak-to-moderate perturbations
within a nonperturbative typicality framework. A key role is played by the
so-called perturbation profile, which characterizes the dependence of the
perturbation matrix elements in the eigenbasis of the unperturbed Hamiltonian
on the difference of the corresponding energy eigenvalues. In particular, a
banded matrix structure is quantitatively captured by a perturbation profile
which approaches zero for large energy differences. The temporal modification
of the relaxation is linked to the perturbation profile via a nonlinear
integral equation, which admits approximate analytical solutions for
sufficiently weak and strong perturbations, and for which we work out a
numerical solution scheme in the general case. As an example, we consider a
spin lattice model with a pronounced banded matrix structure, and we find very
good agreement of the numerics with our analytical predictions without any free
fit parameter.
Related papers
- High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization [83.06112052443233]
This paper studies kernel ridge regression in high dimensions under covariate shifts.
By a bias-variance decomposition, we theoretically demonstrate that the re-weighting strategy allows for decreasing the variance.
For bias, we analyze the regularization of the arbitrary or well-chosen scale, showing that the bias can behave very differently under different regularization scales.
arXiv Detail & Related papers (2024-06-05T12:03:27Z) - Spiral flow of quantum quartic oscillator with energy cutoff [0.0]
The cutoff dependence of the corrected matrices is found to be described by a spiral motion of a three-dimensional vector.
This foundational combination of a limit-cycle and a floating fixed-point behaviors warrants further study.
arXiv Detail & Related papers (2024-04-26T14:34:05Z) - Fate of dissipative hierarchy of timescales in the presence of unitary
dynamics [0.0]
generic behavior of purely dissipative open quantum many-body systems with local dissipation processes can be investigated using random matrix theory.
Here, we analyze how this spectrum evolves when unitary dynamics is present, both for the case of strongly and weakly dissipative dynamics.
For the physically most relevant case of (dissipative) two-body interactions, we find that the correction in the first order of the perturbation vanishes.
For weak dissipation, the spectrum flows into clusters with well-separated eigenmodes, which we identify to be the local symmetries of the Hamiltonian.
arXiv Detail & Related papers (2023-04-18T14:31:02Z) - Order-invariant two-photon quantum correlations in PT-symmetric
interferometers [62.997667081978825]
Multiphoton correlations in linear photonic quantum networks are governed by matrix permanents.
We show that the overall multiphoton behavior of a network from its individual building blocks typically defies intuition.
Our results underline new ways in which quantum correlations may be preserved in counterintuitive ways even in small-scale non-Hermitian networks.
arXiv Detail & Related papers (2023-02-23T09:43:49Z) - Analysis of the Single Reference Coupled Cluster Method for Electronic
Structure Calculations: The Full Coupled Cluster Equations [2.3271703838711972]
We introduce a new well-posedness analysis for the single reference coupled cluster method based on the invertibility of the CC derivative.
Preliminary numerical experiments indicate that the constants that appear in our estimates are a significant improvement over those obtained from the local monotonicity approach.
arXiv Detail & Related papers (2022-12-24T17:29:43Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Hessian Eigenspectra of More Realistic Nonlinear Models [73.31363313577941]
We make a emphprecise characterization of the Hessian eigenspectra for a broad family of nonlinear models.
Our analysis takes a step forward to identify the origin of many striking features observed in more complex machine learning models.
arXiv Detail & Related papers (2021-03-02T06:59:52Z) - Typical relaxation of perturbed quantum many-body systems [0.0]
We establish an analytical prediction for the time-dependent observable expectation values.
Compared to the previous theory, a significantly larger range of perturbation strengths is covered.
arXiv Detail & Related papers (2021-01-09T12:26:41Z) - Adding machine learning within Hamiltonians: Renormalization group
transformations, symmetry breaking and restoration [0.0]
We include the predictive function of a neural network, designed for phase classification, as a conjugate variable coupled to an external field within the Hamiltonian of a system.
Results show that the field can induce an order-disorder phase transition by breaking or restoring the symmetry.
We conclude by discussing how the method provides an essential step toward bridging machine learning and physics.
arXiv Detail & Related papers (2020-09-30T18:44:18Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.