Low-Rank Reorganization via Proportional Hazards Non-negative Matrix
Factorization Unveils Survival Associated Gene Clusters
- URL: http://arxiv.org/abs/2008.03776v2
- Date: Thu, 17 Sep 2020 07:52:45 GMT
- Title: Low-Rank Reorganization via Proportional Hazards Non-negative Matrix
Factorization Unveils Survival Associated Gene Clusters
- Authors: Zhi Huang, Paul Salama, Wei Shao, Jie Zhang, Kun Huang
- Abstract summary: In this work, Cox proportional hazards regression is integrated with NMF by imposing survival constraints.
Using human cancer gene expression data, the proposed technique can unravel critical clusters of cancer genes.
The discovered gene clusters reflect rich biological implications and can help identify survival-related biomarkers.
- Score: 9.773075235189525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the central goals in precision health is the understanding and
interpretation of high-dimensional biological data to identify genes and
markers associated with disease initiation, development, and outcomes. Though
significant effort has been committed to harness gene expression data for
multiple analyses while accounting for time-to-event modeling by including
survival times, many traditional analyses have focused separately on
non-negative matrix factorization (NMF) of the gene expression data matrix and
survival regression with Cox proportional hazards model. In this work, Cox
proportional hazards regression is integrated with NMF by imposing survival
constraints. This is accomplished by jointly optimizing the Frobenius norm and
partial log likelihood for events such as death or relapse. Simulation results
on synthetic data demonstrated the superiority of the proposed method, when
compared to other algorithms, in finding survival associated gene clusters. In
addition, using human cancer gene expression data, the proposed technique can
unravel critical clusters of cancer genes. The discovered gene clusters reflect
rich biological implications and can help identify survival-related biomarkers.
Towards the goal of precision health and cancer treatments, the proposed
algorithm can help understand and interpret high-dimensional heterogeneous
genomics data with accurate identification of survival-associated gene
clusters.
Related papers
- Precision Cancer Classification and Biomarker Identification from mRNA Gene Expression via Dimensionality Reduction and Explainable AI [0.9423257767158634]
This research presents a comprehensive pipeline designed to accurately identify 33 distinct cancer types and their corresponding gene sets.
It incorporates a combination of normalization and feature selection techniques to reduce dataset dimensionality effectively.
We leverage Explainable AI to elucidate the biological significance of the identified cancer-specific genes.
arXiv Detail & Related papers (2024-10-08T18:56:31Z) - Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
We present Cell Flow for Generation, a flow-based conditional generative model for multi-modal single-cell counts.
Our results suggest improved recovery of crucial biological data characteristics while accounting for novel generative tasks.
arXiv Detail & Related papers (2024-07-16T14:05:03Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
We develop a Biological-knowledge enhanced PathGenomic multi-label Transformer to improve genetic mutation prediction performances.
BPGT first establishes a novel gene encoder that constructs gene priors by two carefully designed modules.
BPGT then designs a label decoder that finally performs genetic mutation prediction by two tailored modules.
arXiv Detail & Related papers (2024-06-05T06:42:27Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Cancer-inspired Genomics Mapper Model for the Generation of Synthetic
DNA Sequences with Desired Genomics Signatures [0.0]
Cancer-inspired genomics mapper model (CGMM) combines genetic algorithm (GA) and deep learning (DL) methods.
We demonstrate that CGMM can generate synthetic genomes of selected phenotypes such as ancestry and cancer.
arXiv Detail & Related papers (2023-05-01T07:16:40Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Modelling Technical and Biological Effects in scRNA-seq data with
Scalable GPLVMs [6.708052194104378]
We extend a popular approach for probabilistic non-linear dimensionality reduction, the Gaussian process latent variable model, to scale to massive single-cell datasets.
The key idea is to use an augmented kernel which preserves the factorisability of the lower bound allowing for fast variational inference.
arXiv Detail & Related papers (2022-09-14T15:25:15Z) - Cancer Gene Profiling through Unsupervised Discovery [49.28556294619424]
We introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers.
Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm.
Our signature reports promising results on distinguishing immune inflammatory and immune desert tumors.
arXiv Detail & Related papers (2021-02-11T09:04:45Z) - A Novel Granular-Based Bi-Clustering Method of Deep Mining the
Co-Expressed Genes [76.84066556597342]
Bi-clustering methods are used to mine bi-clusters whose subsets of samples (genes) are co-regulated under their test conditions.
Unfortunately, traditional bi-clustering methods are not fully effective in discovering such bi-clusters.
We propose a novel bi-clustering method by involving here the theory of Granular Computing.
arXiv Detail & Related papers (2020-05-12T02:04:40Z) - The scalable Birth-Death MCMC Algorithm for Mixed Graphical Model
Learning with Application to Genomic Data Integration [0.0]
We propose a novel mixed graphical model approach to analyze multi-omic data of different types.
We find that our method is superior in terms of both computational efficiency and the accuracy of the model selection results.
arXiv Detail & Related papers (2020-05-08T16:34:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.