Graph Kolmogorov-Arnold Networks for Multi-Cancer Classification and Biomarker Identification, An Interpretable Multi-Omics Approach
- URL: http://arxiv.org/abs/2503.22939v2
- Date: Sat, 26 Apr 2025 20:20:24 GMT
- Title: Graph Kolmogorov-Arnold Networks for Multi-Cancer Classification and Biomarker Identification, An Interpretable Multi-Omics Approach
- Authors: Fadi Alharbi, Nishant Budhiraja, Aleksandar Vakanski, Boyu Zhang, Murtada K. Elbashir, Hrshith Gudur, Mohanad Mohammed,
- Abstract summary: Multi-Omics Graph Kolmogorov-Arnold Network (MOGKAN) is a deep learning framework that utilizes messenger-RNA, micro-RNA sequences, and DNA methylation samples.<n>By integrating multi-omics data with graph-based deep learning, our proposed approach demonstrates robust predictive performance and interpretability.
- Score: 36.92842246372894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of heterogeneous multi-omics datasets at a systems level remains a central challenge for developing analytical and computational models in precision cancer diagnostics. This paper introduces Multi-Omics Graph Kolmogorov-Arnold Network (MOGKAN), a deep learning framework that utilizes messenger-RNA, micro-RNA sequences, and DNA methylation samples together with Protein-Protein Interaction (PPI) networks for cancer classification across 31 different cancer types. The proposed approach combines differential gene expression with DESeq2, Linear Models for Microarray (LIMMA), and Least Absolute Shrinkage and Selection Operator (LASSO) regression to reduce multi-omics data dimensionality while preserving relevant biological features. The model architecture is based on the Kolmogorov-Arnold theorem principle and uses trainable univariate functions to enhance interpretability and feature analysis. MOGKAN achieves classification accuracy of 96.28 percent and exhibits low experimental variability in comparison to related deep learning-based models. The biomarkers identified by MOGKAN were validated as cancer-related markers through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. By integrating multi-omics data with graph-based deep learning, our proposed approach demonstrates robust predictive performance and interpretability with potential to enhance the translation of complex multi-omics data into clinically actionable cancer diagnostics.
Related papers
- MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease.
We present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention.
Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance.
arXiv Detail & Related papers (2025-03-01T07:02:30Z) - Comparative Analysis of Multi-Omics Integration Using Advanced Graph Neural Networks for Cancer Classification [40.45049709820343]
Multi-omics data integration poses significant challenges due to the high dimensionality, data complexity, and distinct characteristics of various omics types.
This study evaluates three graph neural network architectures for multi-omics (MO) integration based on graph-convolutional networks (GCN), graph-attention networks (GAT), and graph-transformer networks (GTN)
arXiv Detail & Related papers (2024-10-05T16:17:44Z) - Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network [0.9736758288065405]
Mutagenicity is a concern due to its association with genetic mutations which can result in a variety of negative consequences.
In this work, we introduce a novel stacked ensemble based mutagenicity prediction model.
arXiv Detail & Related papers (2024-09-03T09:14:21Z) - LASSO-MOGAT: A Multi-Omics Graph Attention Framework for Cancer Classification [41.94295877935867]
This paper introduces LASSO-MOGAT, a graph-based deep learning framework that integrates messenger RNA, microRNA, and DNA methylation data to classify 31 cancer types.
arXiv Detail & Related papers (2024-08-30T16:26:04Z) - Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
We propose Pathology-Genome Heterogeneous Graph (PGHG) that integrates whole slide images (WSI) and bulk RNA-Seq expression data with heterogeneous graph neural network for cancer survival analysis.
The PGHG consists of biological knowledge-guided representation learning network and pathology-genome heterogeneous graph.
We evaluate the model on low-grade gliomas, glioblastoma, and kidney renal papillary cell carcinoma datasets from the Cancer Genome Atlas.
arXiv Detail & Related papers (2024-04-11T09:07:40Z) - IGCN: Integrative Graph Convolution Networks for patient level insights and biomarker discovery in multi-omics integration [2.0971479389679337]
We introduce a novel integrative neural network approach for cancer molecular subtype and biomedical classification applications.
IGCN can identify which types of omics receive more emphasis for each patient to predict a certain class.
IGCN has the capability to pinpoint significant biomarkers from a range of omics data types.
arXiv Detail & Related papers (2024-01-31T05:52:11Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
We introduce GODE, which accounts for the dual-level structure inherent in molecules.<n> Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph.<n>By pre-training two GNNs on different graph structures, GODE effectively fuses molecular structures with their corresponding knowledge graph substructures.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
We explore the potential to capture information contained in cancer genomic information using a novel topology-based approach.
We find that this technique has the potential to extract meaningful low-dimensional representations in cancer somatic genetic data.
arXiv Detail & Related papers (2020-11-22T17:31:23Z) - The scalable Birth-Death MCMC Algorithm for Mixed Graphical Model
Learning with Application to Genomic Data Integration [0.0]
We propose a novel mixed graphical model approach to analyze multi-omic data of different types.
We find that our method is superior in terms of both computational efficiency and the accuracy of the model selection results.
arXiv Detail & Related papers (2020-05-08T16:34:58Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.