論文の概要: Richly Activated Graph Convolutional Network for Robust Skeleton-based
Action Recognition
- arxiv url: http://arxiv.org/abs/2008.03791v2
- Date: Thu, 26 Nov 2020 02:07:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 04:36:36.377642
- Title: Richly Activated Graph Convolutional Network for Robust Skeleton-based
Action Recognition
- Title(参考訳): ロバスト骨格に基づく行動認識のためのリッチアクティブグラフ畳み込みネットワーク
- Authors: Yi-Fan Song, Zhang Zhang, Caifeng Shan, Liang Wang
- Abstract要約: グラフ畳み込みネットワーク(GCN)は,すべての骨格関節に広がる十分な識別的特徴を探索するために提案される。
RA-GCNは標準のNTU RGB+D 60および120データセットで同等のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 22.90127409366107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current methods for skeleton-based human action recognition usually work with
complete skeletons. However, in real scenarios, it is inevitable to capture
incomplete or noisy skeletons, which could significantly deteriorate the
performance of current methods when some informative joints are occluded or
disturbed. To improve the robustness of action recognition models, a
multi-stream graph convolutional network (GCN) is proposed to explore
sufficient discriminative features spreading over all skeleton joints, so that
the distributed redundant representation reduces the sensitivity of the action
models to non-standard skeletons. Concretely, the backbone GCN is extended by a
series of ordered streams which is responsible for learning discriminative
features from the joints less activated by preceding streams. Here, the
activation degrees of skeleton joints of each GCN stream are measured by the
class activation maps (CAM), and only the information from the unactivated
joints will be passed to the next stream, by which rich features over all
active joints are obtained. Thus, the proposed method is termed richly
activated GCN (RA-GCN). Compared to the state-of-the-art (SOTA) methods, the
RA-GCN achieves comparable performance on the standard NTU RGB+D 60 and 120
datasets. More crucially, on the synthetic occlusion and jittering datasets,
the performance deterioration due to the occluded and disturbed joints can be
significantly alleviated by utilizing the proposed RA-GCN.
- Abstract(参考訳): 骨格に基づく人間の行動認識の現在の方法は、通常は完全な骨格で機能する。
しかし、実際のシナリオでは、不完全またはノイズのある骨格を捕獲することは避けられないため、いくつかの情報的関節が閉塞または乱れたときに、現在の方法の性能が著しく低下する可能性がある。
マルチストリームグラフ畳み込みネットワーク(GCN)は,全ての骨格関節に分散する十分な識別的特徴を探索し,その分散冗長表現により,作用モデルの非標準骨格への感度を低下させる。
具体的には、バックボーンGCNは一連の順序付きストリームによって拡張され、前のストリームによってアクティベートされていない関節から識別的特徴を学習する。
ここでは、各GCNストリームの骨格関節の活性化度をクラス活性化マップ(CAM)で測定し、非活性化継手からの情報のみを次のストリームに渡して、全ての活性継手の豊富な特徴を得る。
したがって、提案手法はリッチアクティブGCN (RA-GCN) と呼ばれる。
最先端(SOTA)手法と比較して、RA-GCNは標準のNTU RGB+D 60と120のデータセットで同等のパフォーマンスを達成している。
さらに, 合成オクルージョンおよびジッタリングデータセットにおいて, 提案するra-gcnを利用することで, 咬合関節および障害関節による性能低下を著しく軽減することができる。
関連論文リスト
- DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Multi-Dimensional Refinement Graph Convolutional Network with Robust
Decouple Loss for Fine-Grained Skeleton-Based Action Recognition [19.031036881780107]
本稿では,CVSTA(Channel-Variable Space-Temporal Attention)と呼ばれるフレキシブルアテンションブロックを提案する。
CVSTAに基づくMDR-GCN(Multi-dimensional Refinement Graph Convolutional Network)を構築し,チャネルレベル,ジョイントレベル,フレームレベルの特徴の識別を改善する。
さらに,CVSTAの効果を著しく向上し,騒音の影響を低減させるロバスト・デデュプル・ロス(RDL)を提案する。
論文 参考訳(メタデータ) (2023-06-27T09:23:36Z) - Overcoming Topology Agnosticism: Enhancing Skeleton-Based Action
Recognition through Redefined Skeletal Topology Awareness [24.83836008577395]
グラフ畳み込みネットワーク(GCN)は長い間、骨格に基づく行動認識の最先端を定義してきた。
彼らはモデルの重みとともに隣接行列を最適化する傾向がある。
このプロセスは、骨接続データの段階的な崩壊を引き起こし、マッピングしようとしたトポロジとは無関係なモデルで終わる。
本稿では,骨の接続性をグラフ距離のパワーを利用して符号化する革新的な経路を提案する。
論文 参考訳(メタデータ) (2023-05-19T06:40:12Z) - DG-STGCN: Dynamic Spatial-Temporal Modeling for Skeleton-based Action
Recognition [77.87404524458809]
骨格に基づく行動認識のための新しいフレームワーク,すなわち動的グループ時空間GCN(DG-STGCN)を提案する。
DG-GCNとDG-TCNの2つのモジュールで構成される。
DG-STGCNは最先端の手法よりも一貫して優れており、しばしば顕著な差がある。
論文 参考訳(メタデータ) (2022-10-12T03:17:37Z) - Pose-Guided Graph Convolutional Networks for Skeleton-Based Action
Recognition [32.07659338674024]
グラフ畳み込みネットワーク(GCN)は、人体骨格を空間的および時間的グラフとしてモデル化することができる。
本研究では,高性能な人行動認識のためのマルチモーダルフレームワークとして,ポーズ誘導型GCN(PG-GCN)を提案する。
このモジュールの中核となる考え方は、トレーニング可能なグラフを使用して、スケルトンストリームから、ポーズストリームの機能を集約することで、より堅牢な機能表現能力を持つネットワークを実現することだ。
論文 参考訳(メタデータ) (2022-10-10T02:08:49Z) - Skeleton-based Action Recognition via Adaptive Cross-Form Learning [75.92422282666767]
スケルトンをベースとした行動認識は、骨格配列をアクションカテゴリに投影することを目的としており、配列は事前に検出された複数の点から導出される。
既存の方法は、相補的なキューのために多形骨格を活用することでGCNを改善する傾向にある。
本稿では,適応型クロスフォーム学習(ACFL)を提案する。
論文 参考訳(メタデータ) (2022-06-30T07:40:03Z) - SpatioTemporal Focus for Skeleton-based Action Recognition [66.8571926307011]
グラフ畳み込みネットワーク(GCN)は骨格に基づく行動認識において広く採用されている。
近年提案されている骨格に基づく行動認識法の性能は以下の要因によって制限されていると論じる。
近年の注目機構に着想を得て,アクション関連関係情報を取得するためのマルチグラインド・コンテキスト集中モジュール MCF を提案する。
論文 参考訳(メタデータ) (2022-03-31T02:45:24Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
本稿では,CD-JBF-GCNをエンコーダとし,ポーズ予測ヘッドをデコーダとして使用する新しい相関駆動型ジョイントボーン・フュージョングラフ畳み込みネットワークを提案する。
具体的には、CD-JBF-GCは、関節ストリームと骨ストリームの間の運動伝達を探索することができる。
自己教師型トレーニング段階におけるポーズ予測に基づくオートエンコーダにより、未ラベルデータから動作表現を学習することができる。
論文 参考訳(メタデータ) (2022-02-08T16:03:15Z) - JOLO-GCN: Mining Joint-Centered Light-Weight Information for
Skeleton-Based Action Recognition [47.47099206295254]
本稿では,2ストリームグラフ畳み込みネットワークにおいて,人間のポーズスケルトンと共同中心の軽量情報を活用するための新しいフレームワークを提案する。
純粋なスケルトンベースのベースラインと比較して、このハイブリッドスキームは、計算とメモリのオーバーヘッドを低く保ちながら、性能を効果的に向上させる。
論文 参考訳(メタデータ) (2020-11-16T08:39:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。