An Explainable 3D Residual Self-Attention Deep Neural Network FOR Joint
Atrophy Localization and Alzheimer's Disease Diagnosis using Structural MRI
- URL: http://arxiv.org/abs/2008.04024v2
- Date: Tue, 20 Apr 2021 23:44:53 GMT
- Title: An Explainable 3D Residual Self-Attention Deep Neural Network FOR Joint
Atrophy Localization and Alzheimer's Disease Diagnosis using Structural MRI
- Authors: Xin Zhang, Liangxiu Han, Wenyong Zhu, Liang Sun, Daoqiang Zhang
- Abstract summary: We have proposed a novel computer-aided approach for early diagnosis of Alzheimer's disease by introducing an explainable 3D Residual Attention Deep Neural Network (3D ResAttNet) for end-to-end learning from sMRI scans.
The experimental results show that the proposed approach has a competitive advantage over the state-of-the-art models in terms of accuracy performance and generalizability.
- Score: 22.34325971680329
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer-aided early diagnosis of Alzheimer's disease (AD) and its prodromal
form mild cognitive impairment (MCI) based on structure Magnetic Resonance
Imaging (sMRI) has provided a cost-effective and objective way for early
prevention and treatment of disease progression, leading to improved patient
care. In this work, we have proposed a novel computer-aided approach for early
diagnosis of AD by introducing an explainable 3D Residual Attention Deep Neural
Network (3D ResAttNet) for end-to-end learning from sMRI scans. Different from
the existing approaches, the novelty of our approach is three-fold: 1) A
Residual Self-Attention Deep Neural Network has been proposed to capture local,
global and spatial information of MR images to improve diagnostic performance;
2) An explanation method using Gradient-based Localization Class Activation
mapping (Grad-CAM) has been introduced to improve the explainable of the
proposed method; 3) This work has provided a full end-to-end learning solution
for automated disease diagnosis. Our proposed 3D ResAttNet method has been
evaluated on a large cohort of subjects from real datasets for two changeling
classification tasks (i.e., Alzheimer's disease (AD) vs. Normal cohort (NC) and
progressive MCI (pMCI) vs. stable MCI (sMCI)). The experimental results show
that the proposed approach has a competitive advantage over the
state-of-the-art models in terms of accuracy performance and generalizability.
The explainable mechanism in our approach is able to identify and highlight the
contribution of the important brain parts (e.g., hippocampus, lateral ventricle
and most parts of the cortex) for transparent decisions.
Related papers
- Enhanced Deep Learning Methodologies and MRI Selection Techniques for Dementia Diagnosis in the Elderly Population [5.103059984821972]
We introduce a novel methodology for the classification of demented and non-demented elderly patients using 3D brain Magnetic Resonance Imaging (MRI) scans.
Our approach features a unique technique for selectively processing MRI slices, focusing on the most relevant brain regions and excluding less informative sections.
This methodology is complemented by a confidence-based classification committee composed of three custom deep learning models.
arXiv Detail & Related papers (2024-07-24T14:48:40Z) - Patch-based Intuitive Multimodal Prototypes Network (PIMPNet) for Alzheimer's Disease classification [3.144057505325736]
Part-prototype neural networks integrate the computational advantages of Deep Learning (DL) in an interpretable-by-design architecture.
We present PIMPNet, the first interpretable multimodal model for 3D images and demographics applied to the binary classification of Alzheimer's Disease (AD) from 3D sMRI and patient's age.
arXiv Detail & Related papers (2024-07-19T12:58:18Z) - Attention-based Efficient Classification for 3D MRI Image of Alzheimer's
Disease [2.6793044027881865]
This study proposes a novel Alzheimer's disease detection model based on Convolutional Neural Networks.
The experimental results indicate that the employed 2D fusion algorithm effectively improves the model's training expense.
arXiv Detail & Related papers (2024-01-25T12:18:46Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - An explainable two-dimensional single model deep learning approach for
Alzheimer's disease diagnosis and brain atrophy localization [3.9281410693767036]
We propose an end-to-end deep learning approach for automated diagnosis of Alzheimer's disease (AD) and localization of important brain regions related to the disease from sMRI data.
Our approach has been evaluated on two publicly accessible datasets for two classification tasks of AD vs. cognitively normal (CN) and progressive MCI (pMCI) vs. stable MCI (sMCI)
The experimental results indicate that our approach outperforms the state-of-the-art approaches, including those using multi-model and 3D CNN methods.
arXiv Detail & Related papers (2021-07-28T07:19:00Z) - Deep Convolutional Neural Network based Classification of Alzheimer's
Disease using MRI data [8.609787905151563]
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease which destroys brain cells and causes loss to patient's memory.
In this paper, we have proposed a smart and accurate way of diagnosing AD based on a two-dimensional deep convolutional neural network (2D-DCNN) using imbalanced three-dimensional MRI dataset.
The model classifies MRI into three categories: AD, mild cognitive impairment, and normal control: and has achieved 99.89% classification accuracy with imbalanced classes.
arXiv Detail & Related papers (2021-01-08T06:51:08Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.