Enhanced Deep Learning Methodologies and MRI Selection Techniques for Dementia Diagnosis in the Elderly Population
- URL: http://arxiv.org/abs/2407.17324v2
- Date: Thu, 25 Jul 2024 09:50:03 GMT
- Title: Enhanced Deep Learning Methodologies and MRI Selection Techniques for Dementia Diagnosis in the Elderly Population
- Authors: Nikolaos Ntampakis, Konstantinos Diamantaras, Ioanna Chouvarda, Vasileios Argyriou, Panagiotis Sarigianndis,
- Abstract summary: We introduce a novel methodology for the classification of demented and non-demented elderly patients using 3D brain Magnetic Resonance Imaging (MRI) scans.
Our approach features a unique technique for selectively processing MRI slices, focusing on the most relevant brain regions and excluding less informative sections.
This methodology is complemented by a confidence-based classification committee composed of three custom deep learning models.
- Score: 5.103059984821972
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Dementia, a debilitating neurological condition affecting millions worldwide, presents significant diagnostic challenges. In this work, we introduce a novel methodology for the classification of demented and non-demented elderly patients using 3D brain Magnetic Resonance Imaging (MRI) scans. Our approach features a unique technique for selectively processing MRI slices, focusing on the most relevant brain regions and excluding less informative sections. This methodology is complemented by a confidence-based classification committee composed of three custom deep learning models: Dem3D ResNet, Dem3D CNN, and Dem3D EfficientNet. These models work synergistically to enhance decision-making accuracy, leveraging their collective strengths. Tested on the Open Access Series of Imaging Studies(OASIS) dataset, our method achieved an impressive accuracy of 94.12%, surpassing existing methodologies. Furthermore, validation on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset confirmed the robustness and generalizability of our approach. The use of explainable AI (XAI) techniques and comprehensive ablation studies further substantiate the effectiveness of our techniques, providing insights into the decision-making process and the importance of our methodology. This research offers a significant advancement in dementia diagnosis, providing a highly accurate and efficient tool for clinical applications.
Related papers
- Advanced AI Framework for Enhanced Detection and Assessment of Abdominal Trauma: Integrating 3D Segmentation with 2D CNN and RNN Models [5.817643726988823]
This study explores the application of artificial intelligence (AI) and machine learning (ML) to improve the speed and accuracy of abdominal trauma diagnosis.
We developed an advanced AI-based model combining 3D segmentation, 2D Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) to enhance diagnostic performance.
Our model processes abdominal CT scans to provide real-time, precise assessments, thereby improving clinical decision-making and patient outcomes.
arXiv Detail & Related papers (2024-07-23T04:18:34Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
Distributed training can facilitate the processing of large medical image datasets, and improve the accuracy and efficiency of disease diagnosis.
This paper presents an innovative approach to medical image classification, leveraging Federated Learning (FL) to address the dual challenges of data privacy and efficient disease diagnosis.
arXiv Detail & Related papers (2024-04-15T09:07:19Z) - Deep Learning-Based Brain Image Segmentation for Automated Tumour Detection [0.0]
The objective is to leverage state-of-the-art convolutional neural networks (CNNs) on a large dataset of brain MRI scans for segmentation.
The proposed methodology applies pre-processing techniques for enhanced performance and generalizability.
arXiv Detail & Related papers (2024-04-06T15:09:49Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Automated Ensemble-Based Segmentation of Adult Brain Tumors: A Novel
Approach Using the BraTS AFRICA Challenge Data [0.0]
We introduce an ensemble method that comprises eleven unique variations based on three core architectures.
Our findings reveal that the ensemble approach, combining different architectures, outperforms single models.
These results underline the potential of tailored deep learning techniques in precisely segmenting brain tumors.
arXiv Detail & Related papers (2023-08-14T15:34:22Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads to improved unsupervised anomaly segmentation performance.
We compare 2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of the data set size on the performance.
Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D VAE.
arXiv Detail & Related papers (2021-09-14T09:17:27Z) - An Explainable 3D Residual Self-Attention Deep Neural Network FOR Joint
Atrophy Localization and Alzheimer's Disease Diagnosis using Structural MRI [22.34325971680329]
We have proposed a novel computer-aided approach for early diagnosis of Alzheimer's disease by introducing an explainable 3D Residual Attention Deep Neural Network (3D ResAttNet) for end-to-end learning from sMRI scans.
The experimental results show that the proposed approach has a competitive advantage over the state-of-the-art models in terms of accuracy performance and generalizability.
arXiv Detail & Related papers (2020-08-10T11:08:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.