Adversarial Examples on Object Recognition: A Comprehensive Survey
- URL: http://arxiv.org/abs/2008.04094v2
- Date: Thu, 3 Sep 2020 09:53:48 GMT
- Title: Adversarial Examples on Object Recognition: A Comprehensive Survey
- Authors: Alex Serban, Erik Poll, Joost Visser
- Abstract summary: Deep neural networks are at the forefront of machine learning research.
adversarial examples are intentionally designed to test the network's sensitivity to distribution drifts.
We discuss the impact of adversarial examples on security, safety, and robustness of neural networks.
- Score: 1.976652238476722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks are at the forefront of machine learning research.
However, despite achieving impressive performance on complex tasks, they can be
very sensitive: Small perturbations of inputs can be sufficient to induce
incorrect behavior. Such perturbations, called adversarial examples, are
intentionally designed to test the network's sensitivity to distribution
drifts. Given their surprisingly small size, a wide body of literature
conjectures on their existence and how this phenomenon can be mitigated. In
this article we discuss the impact of adversarial examples on security, safety,
and robustness of neural networks. We start by introducing the hypotheses
behind their existence, the methods used to construct or protect against them,
and the capacity to transfer adversarial examples between different machine
learning models. Altogether, the goal is to provide a comprehensive and
self-contained survey of this growing field of research.
Related papers
- A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
adversarial examples can manipulate machine learning models into making erroneous predictions.
The transferability of adversarial examples enables black-box attacks which circumvent the need for detailed knowledge of the target model.
This survey explores the landscape of the adversarial transferability of adversarial examples.
arXiv Detail & Related papers (2023-10-26T17:45:26Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
Our study explores up to five attack algorithms across three datasets.
We identify human-identifiable features in adversarial perturbations.
Using pixel-level annotations, we extract such features and demonstrate their ability to compromise target models.
arXiv Detail & Related papers (2023-09-28T22:31:29Z) - Mitigating Adversarial Attacks in Deepfake Detection: An Exploration of
Perturbation and AI Techniques [1.0718756132502771]
adversarial examples are subtle perturbations artfully injected into clean images or videos.
Deepfakes have emerged as a potent tool to manipulate public opinion and tarnish the reputations of public figures.
This article delves into the multifaceted world of adversarial examples, elucidating the underlying principles behind their capacity to deceive deep learning algorithms.
arXiv Detail & Related papers (2023-02-22T23:48:19Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
We show that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's erroneous prediction.
This concept of human-recognizable information allows us to explain key features related to adversarial perturbations.
arXiv Detail & Related papers (2022-05-30T18:04:57Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
It has been found that deep learning models are vulnerable to data instances that can mislead the model to make incorrect classification decisions.
This survey explores the researches that employ different aspects of adversarial machine learning in the area of network intrusion detection.
arXiv Detail & Related papers (2021-12-06T19:10:23Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
We investigate the transferability of adversarial examples for text classification models.
We propose a genetic algorithm to find an ensemble of models that can induce adversarial examples to fool almost all existing models.
We derive word replacement rules that can be used for model diagnostics from these adversarial examples.
arXiv Detail & Related papers (2020-11-17T10:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.