A Survey on Transferability of Adversarial Examples across Deep Neural Networks
- URL: http://arxiv.org/abs/2310.17626v2
- Date: Thu, 2 May 2024 00:08:36 GMT
- Title: A Survey on Transferability of Adversarial Examples across Deep Neural Networks
- Authors: Jindong Gu, Xiaojun Jia, Pau de Jorge, Wenqain Yu, Xinwei Liu, Avery Ma, Yuan Xun, Anjun Hu, Ashkan Khakzar, Zhijiang Li, Xiaochun Cao, Philip Torr,
- Abstract summary: adversarial examples can manipulate machine learning models into making erroneous predictions.
The transferability of adversarial examples enables black-box attacks which circumvent the need for detailed knowledge of the target model.
This survey explores the landscape of the adversarial transferability of adversarial examples.
- Score: 53.04734042366312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of Deep Neural Networks (DNNs) has revolutionized various domains by enabling the resolution of complex tasks spanning image recognition, natural language processing, and scientific problem-solving. However, this progress has also brought to light a concerning vulnerability: adversarial examples. These crafted inputs, imperceptible to humans, can manipulate machine learning models into making erroneous predictions, raising concerns for safety-critical applications. An intriguing property of this phenomenon is the transferability of adversarial examples, where perturbations crafted for one model can deceive another, often with a different architecture. This intriguing property enables black-box attacks which circumvents the need for detailed knowledge of the target model. This survey explores the landscape of the adversarial transferability of adversarial examples. We categorize existing methodologies to enhance adversarial transferability and discuss the fundamental principles guiding each approach. While the predominant body of research primarily concentrates on image classification, we also extend our discussion to encompass other vision tasks and beyond. Challenges and opportunities are discussed, highlighting the importance of fortifying DNNs against adversarial vulnerabilities in an evolving landscape.
Related papers
- Investigating and unmasking feature-level vulnerabilities of CNNs to adversarial perturbations [3.4530027457862]
This study explores the impact of adversarial perturbations on Convolutional Neural Networks (CNNs)
We introduce the Adversarial Intervention framework to study the vulnerability of a CNN to adversarial perturbations.
arXiv Detail & Related papers (2024-05-31T08:14:44Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
Our study explores up to five attack algorithms across three datasets.
We identify human-identifiable features in adversarial perturbations.
Using pixel-level annotations, we extract such features and demonstrate their ability to compromise target models.
arXiv Detail & Related papers (2023-09-28T22:31:29Z) - Mitigating Adversarial Attacks in Deepfake Detection: An Exploration of
Perturbation and AI Techniques [1.0718756132502771]
adversarial examples are subtle perturbations artfully injected into clean images or videos.
Deepfakes have emerged as a potent tool to manipulate public opinion and tarnish the reputations of public figures.
This article delves into the multifaceted world of adversarial examples, elucidating the underlying principles behind their capacity to deceive deep learning algorithms.
arXiv Detail & Related papers (2023-02-22T23:48:19Z) - Robust Transferable Feature Extractors: Learning to Defend Pre-Trained
Networks Against White Box Adversaries [69.53730499849023]
We show that adversarial examples can be successfully transferred to another independently trained model to induce prediction errors.
We propose a deep learning-based pre-processing mechanism, which we refer to as a robust transferable feature extractor (RTFE)
arXiv Detail & Related papers (2022-09-14T21:09:34Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
We show that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's erroneous prediction.
This concept of human-recognizable information allows us to explain key features related to adversarial perturbations.
arXiv Detail & Related papers (2022-05-30T18:04:57Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
We investigate the transferability of adversarial examples for text classification models.
We propose a genetic algorithm to find an ensemble of models that can induce adversarial examples to fool almost all existing models.
We derive word replacement rules that can be used for model diagnostics from these adversarial examples.
arXiv Detail & Related papers (2020-11-17T10:45:05Z) - Adversarial Examples on Object Recognition: A Comprehensive Survey [1.976652238476722]
Deep neural networks are at the forefront of machine learning research.
adversarial examples are intentionally designed to test the network's sensitivity to distribution drifts.
We discuss the impact of adversarial examples on security, safety, and robustness of neural networks.
arXiv Detail & Related papers (2020-08-07T08:51:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.