Labels Are Not Perfect: Improving Probabilistic Object Detection via
Label Uncertainty
- URL: http://arxiv.org/abs/2008.04168v1
- Date: Mon, 10 Aug 2020 14:49:49 GMT
- Title: Labels Are Not Perfect: Improving Probabilistic Object Detection via
Label Uncertainty
- Authors: Di Feng and Lars Rosenbaum and Fabian Timm and Klaus Dietmayer
- Abstract summary: We leverage our previously proposed method for estimating uncertainty inherent in ground truth bounding box parameters.
Experimental results on the KITTI dataset show that our method surpasses both the baseline model and the models based on simple uncertaintys by up to 3.6% in terms of Average Precision.
- Score: 12.531126969367774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable uncertainty estimation is crucial for robust object detection in
autonomous driving. However, previous works on probabilistic object detection
either learn predictive probability for bounding box regression in an
un-supervised manner, or use simple heuristics to do uncertainty
regularization. This leads to unstable training or suboptimal detection
performance. In this work, we leverage our previously proposed method for
estimating uncertainty inherent in ground truth bounding box parameters (which
we call label uncertainty) to improve the detection accuracy of a probabilistic
LiDAR-based object detector. Experimental results on the KITTI dataset show
that our method surpasses both the baseline model and the models based on
simple heuristics by up to 3.6% in terms of Average Precision.
Related papers
- Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection [1.8990839669542954]
We propose a cost-sensitive framework for object detection tailored to user-defined budgets.
We derive minimum thresholding requirements to prevent performance degradation.
We automate and optimize the thresholding process to maximize the failure recognition rate.
arXiv Detail & Related papers (2024-04-26T14:03:55Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
Uncertainty estimation is an effective tool to provide statistically accurate predictions.
In this paper, we propose a Variational Neural Network-based TANet 3D object detector to generate 3D object detections with uncertainty.
arXiv Detail & Related papers (2023-02-12T14:30:03Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - A Review of Uncertainty Calibration in Pretrained Object Detectors [5.440028715314566]
We investigate the uncertainty calibration properties of different pretrained object detection architectures in a multi-class setting.
We propose a framework to ensure a fair, unbiased, and repeatable evaluation.
We deliver novel insights into why poor detector calibration emerges.
arXiv Detail & Related papers (2022-10-06T14:06:36Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation [70.75100533512021]
In this paper, we formulate the label uncertainty problem as the diversity of potentially plausible bounding boxes of objects.
We propose GLENet, a generative framework adapted from conditional variational autoencoders, to model the one-to-many relationship between a typical 3D object and its potential ground-truth bounding boxes with latent variables.
The label uncertainty generated by GLENet is a plug-and-play module and can be conveniently integrated into existing deep 3D detectors.
arXiv Detail & Related papers (2022-07-06T06:26:17Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - An Uncertainty Estimation Framework for Probabilistic Object Detection [5.83620245905973]
We introduce a new technique that combines two popular methods to estimate uncertainty in object detection.
Our framework employs deep ensembles and Monte Carlo dropout for approximating predictive uncertainty.
arXiv Detail & Related papers (2021-06-28T22:29:59Z) - Estimation of Accurate and Calibrated Uncertainties in Deterministic
models [0.8702432681310401]
We devise a method to transform a deterministic prediction into a probabilistic one.
We show that for doing so, one has to compromise between the accuracy and the reliability (calibration) of such a model.
We show several examples both with synthetic data, where the underlying hidden noise can accurately be recovered, and with large real-world datasets.
arXiv Detail & Related papers (2020-03-11T04:02:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.