Gate-free state preparation for fast variational quantum eigensolver
simulations: ctrl-VQE
- URL: http://arxiv.org/abs/2008.04302v3
- Date: Tue, 11 May 2021 03:41:17 GMT
- Title: Gate-free state preparation for fast variational quantum eigensolver
simulations: ctrl-VQE
- Authors: Oinam Romesh Meitei, Bryan T. Gard, George S. Barron, David P. Pappas,
Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall
- Abstract summary: VQE is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers.
We propose an alternative algorithm where the quantum circuit used for state preparation is removed entirely and replaced by a quantum control routine.
As with VQE, the objective function optimized is the expectation value of the qubit-mapped molecular Hamiltonian.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The variational quantum eigensolver (VQE) is currently the flagship algorithm
for solving electronic structure problems on near-term quantum computers. This
hybrid quantum/classical algorithm involves implementing a sequence of
parameterized gates on quantum hardware to generate a target quantum state, and
then measuring the expectation value of the molecular Hamiltonian. Due to
finite coherence times and frequent gate errors, the number of gates that can
be implemented remains limited on current quantum devices, preventing accurate
applications to systems with significant entanglement, such as strongly
correlated molecules. In this work, we propose an alternative algorithm (which
we refer to as ctrl-VQE) where the quantum circuit used for state preparation
is removed entirely and replaced by a quantum control routine which
variationally shapes a pulse to drive the initial Hartree-Fock state to the
full CI target state. As with VQE, the objective function optimized is the
expectation value of the qubit-mapped molecular Hamiltonian. However, by
removing the quantum circuit, the coherence times required for state
preparation can be drastically reduced by directly optimizing the pulses. We
demonstrate the potential of this method numerically by directly optimizing
pulse shapes which accurately model the dissociation curves of the hydrogen
molecule (covalent bond) and helium hydride ion (ionic bond), and we compute
the single point energy for LiH with four transmons.
Related papers
- Gate-based protocol simulations for quantum repeaters using quantum-dot
molecules in switchable electric fields [0.0]
Electrically controllable quantum-dot molecules (QDMs) are a promising platform for deterministic entanglement generation.
We develop a microscopic open-quantum-systems approach to model the generation of entangled spin states with high fidelity.
arXiv Detail & Related papers (2023-08-28T13:25:56Z) - Folded Spectrum VQE : A quantum computing method for the calculation of
molecular excited states [0.0]
Folded Spectrum (FS) method as extension to Variational Quantum Eigensolver (VQE) algorithm for computation of molecular excited states.
Inspired by the variance-based methods from the Quantum Monte Carlo literature, the FS method minimizes the energy variance, thus requiring a computationally expensive squared Hamiltonian.
We apply the FS-VQE method to small molecules for a significant reduction of the computational cost.
arXiv Detail & Related papers (2023-05-08T15:34:56Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Verifiably Exact Solution of the Electronic Schr\"odinger Equation on
Quantum Devices [0.0]
We present an algorithm that yields verifiably exact solutions of the many-electron Schr"odinger equation.
We demonstrate the algorithm on both quantum simulators and noisy quantum computers.
arXiv Detail & Related papers (2023-03-01T19:00:00Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Exploring the scaling limitations of the variational quantum eigensolver
with the bond dissociation of hydride diatomic molecules [0.0]
Materials simulations involving strongly correlated electrons pose fundamental challenges to state-of-the-art electronic structure methods.
No quantum computer has simulated a molecule of a size and complexity relevant to real-world applications, despite the fact that the variational quantum eigensolver algorithm can predict chemically accurate total energies.
We show that the inclusion of d-orbitals and the use of the UCCSD ansatz, which are both necessary to capture the correct TiH physics, dramatically increase the cost of this problem.
arXiv Detail & Related papers (2022-08-15T19:21:17Z) - Pulse based Variational Quantum Optimal Control for hybrid quantum
computing [0.0]
This work studies pulse based variational quantum algorithms (VQAs)
VQAs are designed to determine the ground state of a quantum mechanical system by combining classical and quantum hardware.
arXiv Detail & Related papers (2022-02-17T21:43:54Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.