Folded Spectrum VQE : A quantum computing method for the calculation of
molecular excited states
- URL: http://arxiv.org/abs/2305.04783v2
- Date: Thu, 29 Feb 2024 12:07:50 GMT
- Title: Folded Spectrum VQE : A quantum computing method for the calculation of
molecular excited states
- Authors: Lila Cadi Tazi and Alex J.W. Thom
- Abstract summary: Folded Spectrum (FS) method as extension to Variational Quantum Eigensolver (VQE) algorithm for computation of molecular excited states.
Inspired by the variance-based methods from the Quantum Monte Carlo literature, the FS method minimizes the energy variance, thus requiring a computationally expensive squared Hamiltonian.
We apply the FS-VQE method to small molecules for a significant reduction of the computational cost.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent developments of quantum computing present potential novel pathways
for quantum chemistry, as the increased computational power of quantum
computers could be harnessed to naturally encode and solve electronic structure
problems. Theoretically exact quantum algorithms for chemistry have been
proposed (e.g. Quantum Phase Estimation) but the limited capabilities of
current noisy intermediate scale quantum devices (NISQ) motivated the
development of less demanding hybrid algorithms. In this context, the
Variational Quantum Eigensolver (VQE) algorithm was successfully introduced as
an effective method to compute the ground state energy of small molecules. The
current study investigates the Folded Spectrum (FS) method as an extension to
the VQE algorithm for the computation of molecular excited states. It provides
the possibility of directly computing excited states around a selected target
energy, using the same ansatz as for the ground state calculation. Inspired by
the variance-based methods from the Quantum Monte Carlo literature, the FS
method minimizes the energy variance, thus requiring a computationally
expensive squared Hamiltonian. We alleviate this potentially poor scaling by
employing a Pauli grouping procedure, identifying sets of commuting Pauli
strings that can be evaluated simultaneously. This allows for a significant
reduction of the computational cost. We apply the FS-VQE method to small
molecules (H$_2$,LiH), obtaining all electronic excited states with chemical
accuracy on ideal quantum simulators.
Related papers
- A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Near-term quantum algorithm for computing molecular and materials
properties based on recursive variational series methods [44.99833362998488]
We propose a quantum algorithm to estimate the properties of molecules using near-term quantum devices.
We test our method by computing the one-particle Green's function in the energy domain and the autocorrelation function in the time domain.
arXiv Detail & Related papers (2022-06-20T16:33:23Z) - A Quantum-compute Algorithm for Exact Laser-driven Electron Dynamics in
Molecules [0.0]
We simulate the laser-driven electron dynamics in small molecules such as lithium hydride.
Results are compared with the time-dependent full configuration interaction method (TD-FCI)
arXiv Detail & Related papers (2022-05-21T09:35:05Z) - Simulating molecules using the VQE algorithm on Qiskit [0.0]
We provide the implementation of the Variational Quantum Eigensolver algorithm for finding the ground state energy of a hydrogen molecule on Qiskit library for python.
arXiv Detail & Related papers (2022-01-08T15:05:32Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Molecular Excited State Calculations with Adaptive Wavefunctions on a
Quantum Eigensolver Emulation: Reducing Circuit Depth and Separating Spin
States [0.0]
Variational Quantum Deflation (VQD) is an extension of the Variational Quantum Eigensolver (VQE) for calculating electronic excited state energies.
We investigate the use of adaptive quantum circuit growth (ADAPT-VQE) in excited state VQD calculations.
arXiv Detail & Related papers (2021-05-21T10:59:29Z) - Gate-free state preparation for fast variational quantum eigensolver
simulations: ctrl-VQE [0.0]
VQE is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers.
We propose an alternative algorithm where the quantum circuit used for state preparation is removed entirely and replaced by a quantum control routine.
As with VQE, the objective function optimized is the expectation value of the qubit-mapped molecular Hamiltonian.
arXiv Detail & Related papers (2020-08-10T17:53:09Z) - Computation of molecular excited states on IBM quantum computers using a
discriminative variational quantum eigensolver [0.965964228590342]
We propose a variational quantum machine learning based method to determine molecular excited states.
Our method uses a combination of two parametrized quantum circuits, working in tandem, combined with a Variational Quantum Eigensolver (VQE) to iteratively find the eigenstates of a molecular Hamiltonian.
arXiv Detail & Related papers (2020-01-14T17:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.