Riemannian stochastic recursive momentum method for non-convex
optimization
- URL: http://arxiv.org/abs/2008.04555v1
- Date: Tue, 11 Aug 2020 07:05:58 GMT
- Title: Riemannian stochastic recursive momentum method for non-convex
optimization
- Authors: Andi Han, Junbin Gao
- Abstract summary: We propose atildeOepsilon$-approximate gradient evaluations evaluation method for $mathcalO gradient evaluations with one iteration.
Proposed experiment demonstrate the superiority of the algorithm.
- Score: 36.79189106909088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a stochastic recursive momentum method for Riemannian non-convex
optimization that achieves a near-optimal complexity of
$\tilde{\mathcal{O}}(\epsilon^{-3})$ to find $\epsilon$-approximate solution
with one sample. That is, our method requires $\mathcal{O}(1)$ gradient
evaluations per iteration and does not require restarting with a large batch
gradient, which is commonly used to obtain the faster rate. Extensive
experiment results demonstrate the superiority of our proposed algorithm.
Related papers
- Accelerated Stochastic Min-Max Optimization Based on Bias-corrected Momentum [30.01198677588252]
First-order algorithms require at least $mathcalO(varepsilonepsilon-4)$ complexity to find an $varepsilon-stationary point.
We introduce novel momentum algorithms utilizing efficient variable complexity.
The effectiveness of the method is validated through robust logistic regression using real-world datasets.
arXiv Detail & Related papers (2024-06-18T20:14:52Z) - Riemannian Bilevel Optimization [35.42472057648458]
We focus in particular on batch and gradient-based methods, with the explicit goal of avoiding second-order information.
We propose and analyze $mathrmRF2SA$, a method that leverages first-order gradient information.
We provide explicit convergence rates for reaching $epsilon$-stationary points under various setups.
arXiv Detail & Related papers (2024-05-22T20:49:01Z) - A Stochastic Quasi-Newton Method for Non-convex Optimization with Non-uniform Smoothness [4.097563258332958]
We propose a fast quasi-Newton method when there exists non-uniformity in smoothness.
Our algorithm can achieve the best-known $mathcalO(epsilon-3)$ sample complexity and enjoys convergence speedup.
Our numerical experiments show that our proposed algorithm outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-22T14:40:29Z) - On the Stochastic (Variance-Reduced) Proximal Gradient Method for Regularized Expected Reward Optimization [10.36447258513813]
We consider a regularized expected reward optimization problem in the non-oblivious setting that covers many existing problems in reinforcement learning (RL)
In particular, the method has shown to admit an $O(epsilon-4)$ sample to an $epsilon$-stationary point, under standard conditions.
Our analysis shows that the sample complexity can be improved from $O(epsilon-4)$ to $O(epsilon-3)$ under additional conditions.
arXiv Detail & Related papers (2024-01-23T06:01:29Z) - Online estimation of the inverse of the Hessian for stochastic optimization with application to universal stochastic Newton algorithms [4.389938747401259]
This paper addresses second-order optimization for estimating the minimizer of a convex function written as an expectation.
A direct recursive estimation technique for the inverse Hessian matrix using a Robbins-Monro procedure is introduced.
Above all, it allows to develop universal Newton methods and investigate the efficiency of the proposed approach.
arXiv Detail & Related papers (2024-01-15T13:58:30Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
In this paper we consider finding an approximate second-order stationary point (SOSP) that minimizes a twice different subject general non conic optimization.
In particular, we propose a Newton-CG based-augmentedconjugate method for finding an approximate SOSP.
arXiv Detail & Related papers (2023-01-10T20:43:29Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Gradient Free Minimax Optimization: Variance Reduction and Faster
Convergence [120.9336529957224]
In this paper, we denote the non-strongly setting on the magnitude of a gradient-free minimax optimization problem.
We show that a novel zeroth-order variance reduced descent algorithm achieves the best known query complexity.
arXiv Detail & Related papers (2020-06-16T17:55:46Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonsmooth functions.
In particular, we study Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions.
arXiv Detail & Related papers (2020-02-10T23:23:04Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.