Riemannian Bilevel Optimization
- URL: http://arxiv.org/abs/2405.15816v1
- Date: Wed, 22 May 2024 20:49:01 GMT
- Title: Riemannian Bilevel Optimization
- Authors: Sanchayan Dutta, Xiang Cheng, Suvrit Sra,
- Abstract summary: We focus in particular on batch and gradient-based methods, with the explicit goal of avoiding second-order information.
We propose and analyze $mathrmRF2SA$, a method that leverages first-order gradient information.
We provide explicit convergence rates for reaching $epsilon$-stationary points under various setups.
- Score: 35.42472057648458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop new algorithms for Riemannian bilevel optimization. We focus in particular on batch and stochastic gradient-based methods, with the explicit goal of avoiding second-order information such as Riemannian hyper-gradients. We propose and analyze $\mathrm{RF^2SA}$, a method that leverages first-order gradient information to navigate the complex geometry of Riemannian manifolds efficiently. Notably, $\mathrm{RF^2SA}$ is a single-loop algorithm, and thus easier to implement and use. Under various setups, including stochastic optimization, we provide explicit convergence rates for reaching $\epsilon$-stationary points. We also address the challenge of optimizing over Riemannian manifolds with constraints by adjusting the multiplier in the Lagrangian, ensuring convergence to the desired solution without requiring access to second-order derivatives.
Related papers
- Convergence and complexity of block majorization-minimization for constrained block-Riemannian optimization [18.425648833592312]
Blockization-minimization (BMM) is a simple iterative gradient for non-exhaustive subspace estimation.
Our analysis makes explicit use of Euclidian constraints.
arXiv Detail & Related papers (2023-12-16T05:40:19Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
We show that policies under study avoid strict saddle points / submanifolds with probability 1.
This result provides an important sanity check as it shows that, almost always, the limit state of an algorithm can only be a local minimizer.
arXiv Detail & Related papers (2023-11-04T11:12:24Z) - Zeroth-order Riemannian Averaging Stochastic Approximation Algorithms [19.99781875916751]
We show that textttZo-RASA achieves optimal sample complexities for generating $epsilon$-approximation first-order stationary solutions.
We improve the algorithm's practicality by using geometrics and vector transport, instead of exponential mappings and parallel transports.
arXiv Detail & Related papers (2023-09-25T20:13:36Z) - Faster Riemannian Newton-type Optimization by Subsampling and Cubic
Regularization [3.867143522757309]
This work is on constrained large-scale non-constrained optimization where the constraint set implies a manifold structure.
We propose a new second-order saddleian optimization algorithm, aiming at improving convergence and reducing computational cost.
arXiv Detail & Related papers (2023-02-22T00:37:44Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-max algorithms have been analyzed in the Euclidean setting.
We prove that the extraiteient (RCEG) method corrected lastrate convergence at a linear rate.
arXiv Detail & Related papers (2022-06-04T18:53:44Z) - Automatic differentiation for Riemannian optimization on low-rank matrix
and tensor-train manifolds [71.94111815357064]
In scientific computing and machine learning applications, matrices and more general multidimensional arrays (tensors) can often be approximated with the help of low-rank decompositions.
One of the popular tools for finding the low-rank approximations is to use the Riemannian optimization.
arXiv Detail & Related papers (2021-03-27T19:56:00Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Riemannian Stochastic Proximal Gradient Methods for Nonsmooth
Optimization over the Stiefel Manifold [7.257751371276488]
R-ProxSGD and R-ProxSPB are generalizations of proximal SGD and proximal SpiderBoost.
R-ProxSPB algorithm finds an $epsilon$-stationary point with $O(epsilon-3)$ IFOs in the online case, and $O(n+sqrtnepsilon-3)$ IFOs in the finite-sum case.
arXiv Detail & Related papers (2020-05-03T23:41:35Z) - Stochastic Zeroth-order Riemannian Derivative Estimation and
Optimization [15.78743548731191]
We propose an oracle version of the Gaussian smoothing function to overcome the difficulty of non-linearity of manifold non-linearity.
We demonstrate the applicability of our algorithms by results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks.
arXiv Detail & Related papers (2020-03-25T06:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.